碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响

王君雅, 羊莹, 宁平. 碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响[J]. 环境工程学报, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095
引用本文: 王君雅, 羊莹, 宁平. 碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响[J]. 环境工程学报, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095
WANG Junya, YANG Ying, NING Ping. Effect of alkali metal nitrates promoted LDH-based material for CO2 sorption performance[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095
Citation: WANG Junya, YANG Ying, NING Ping. Effect of alkali metal nitrates promoted LDH-based material for CO2 sorption performance[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095

碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响

  • 基金项目:

    云南省教育厅科学研究基金项目(2017ZZX137)

    昆工理工大学高层次人才平台建设项目(201722017)

    国家自然科学基金青年基金项目(51802135)

Effect of alkali metal nitrates promoted LDH-based material for CO2 sorption performance

  • Fund Project:
  • 摘要: 为进一步提高LDH基材料的CO2吸附性能以及吸-脱循环稳定性能,采用浸渍法将碱金属硝酸盐负载在LDH基材料上,分别探究了Mg/Al比、合成pH、碱金属硝酸盐种类和负载量等对其CO2吸附性能的影响。结果表明,当LDH中Mg/Al比例为20,合成pH为10,负载30% Li0.3Na0.18K0.52NO3后,在最佳煅烧温度500 ℃,最佳吸附温度260 ℃的条件下,其 CO2吸附量最大可达到4.64 mmol·g?1。另外,该材料在经历了10个吸-脱附循环过程后,表现出较好的循环稳定性能。通过分析可知,碱金属硝酸盐没有参与CO2吸附反应,碱金属硝酸盐的负载对LDH的CO2吸附性能有极大地促进作用。
  • 加载中
  • [1] WANG J, HUANG L, YANG R, et al.Recent advances in solid sorbents for CO2 capture and new development trends[J].Energy & Environmental Science,2014,7(11):3478-3518 10.1039/C4EE01647E
    [2] WANG Q, TAY H H, ZHONG Z, et al.Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity[J].Energy & Environmental Science, 2012,5(6):7526–7530 10.1039/C2EE21409A
    [3] MONDAL M K, BALSORA H K, VARSHNEY P.Progress and trends in CO2 capture/separation technologies: A review[J].Energy,2012,46(1):431-441 10.1016/j.energy.2012.08.006
    [4] GAO Y, ZHANG Z, WU J, et al.Comprehensive investigation of CO2 adsorption on Mg–Al–CO3 LDH-derived mixed metal oxides[J].Journal of Materials Chemistry A,2013,41(1):12782-12790 10.1039/C3TA13039H
    [5] 朱晨明, 王保登, 张中正, 等. 金属-有机骨架复合材料的制备及其二氧化碳吸附性能[J]. 化工进展,2016,35(9):2876-2884
    [6] ELONEVA S, SAID A, FOGELHOLM C J, et al.Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate[J].Applied Energy,2012,90(1):329-334 10.1016/j.apenergy.2011.05.045
    [7] ZHAO B, TAO W, ZHONG M, et al.Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review[J].Renewable and Sustainable Energy Reviews,2016,65:44-56 10.1016/j.rser.2016.06.059
    [8] BOBICKI E R, LIU Q, XU Z, et al.Carbon capture and storage using alkaline industrial wastes[J].Progress in Energy and Combustion Science, 2016,38(2):302-320 10.1016/j.pecs.2011.11.002
    [9] OLIVARES-MARIN M, DRAGE T C, MAROTO-VALER M M.Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures[J].International Journal of Greenhouse Gas Control,2010,4(4):623-629 10.1016/j.ijggc.2009.12.015
    [10] IRURETAGOYENA D, HUANG X, SHAFFER M S P, et al.Influence of alkali metals (Na, K, and Cs) on CO2 adsorption by layered double oxides supported on graphene oxide[J].Industrial & Engineering Chemistry Research,2015,54(46):11610-11618 10.1021/acs.iecr.5b02762
    [11] FICICILAR B, DOGU T.Breakthrough analysis for CO2 removal by activated hydrotalcite and soda ash[J].Catalysis Today,2006,115(1/2/3/4):274–278 10.1016/j.cattod.2006.02.058
    [12] HUANG L, XU C, REN R, et al.Revealing how molten salts promote CO2 capture on CaO via an impedance study and sorption kinetics simulation[J].Sustainable Energy & Fuels,2018,2(1):68-72 10.1039/C7SE00502D
    [13] 高峰, 李存梅, 王媛, 等. 孙树脂基球状活性炭的制备及对二氧化碳吸附性能的研究[J]. 燃料化学学报,2014,42(1):116-170
    [14] 陈爱兵, 于奕峰, 臧文伟, 等. 掺氮多孔碳在二氧化碳吸附分离中的应用[J]. 无机材料学报,2015,30(1):9-16
    [15] WANG Q, GAO Y, LUO J, et al.Synthesis of nano-sized spherical Mg3Al–CO3 layered double hydroxide as a high-temperature CO2 adsorbent[J].RSC Advances,2013,3(10):3414–3420 10.1039/C2RA22607C
    [16] WANG Q, TAY H H, NG D J W, et al.The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture[J].ChemSusChem,2010,3(8):965-973 10.1002/cssc.201000099
    [17] 艾宁, 姜哲, 徐茜, 等. 氨基改性层状双氢氧化物的制备及其二氧化碳吸附机理[J]. 化工学报,2013,64(2):616-623
    [18] WANG J.HUANG L, GAO Y, et al.A simple and reliable method for determining the delamination degree of nitrate and glycine intercalated LDHs in formamide[J].Chemical.Communications,2014,50(70):10130-10132 10.1039/C4CC05015K
    [19] LI S, SHI Y, YANG Y, et al.High-performance CO2 adsorbent from interlayer?at moderate temperatures[J].Chemistry of Materials,2015,27(6):1943-1949 10.1021/cm503295g
    [20] HUANG L, WANG J, GAO Y, et al.Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range[J].Journal of Materials Chemistry A,2014,2(43):18454–18462 10.1039/C4TA04065A
    [21] LEE J M, MIN Y J, LEE K B, et al.Enhancement of CO2 sorption uptake on hydrotalcite by impregnation with K2CO3[J].Langmuir,2010,26(24):18788–18797 10.1021/la102974s
    [22] 王磊. 碱金属盐修饰MgO基CO2吸附剂的制备及其结构:性能关系的研究[D]. 上海:华东理工大学,2017
    [23] QIAO Y, WANG J, ZHANG Y, et al.Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: optimization of the Li/Na/K ratio[J].Industrial & Engineering Chemistry Research,2017,56(6):1509-1517 10.1021/acs.iecr.6b04793
    [24] GAO W, ZHOU T, LOUIS B, et al.Hydrothermal fabrication of high specific surface area mesoporous MgO with excellent CO2 adsorption potential at intermediate temperatures[J].Catalysts,2017,7(4):116-131 10.3390/catal7040116
    [25] GAO W, ZHOU T, GAO Y, et al.Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review[J].Journal of Energy Chemistry,2017,26(5):830-838 10.1016/j.jechem.2017.06.005
    [26] ZHANG K, LI X S, LI W Z, et al.Phase transfer-catalyzed fast CO2 absorption by MgO-based absorbents with high cycling capacity[J].Advanced Materials Interfaces,2014,1(3):1400030 10.1002/admi.201400030
  • 加载中
计量
  • 文章访问数:  3481
  • HTML全文浏览数:  3274
  • PDF下载数:  146
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-29
王君雅, 羊莹, 宁平. 碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响[J]. 环境工程学报, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095
引用本文: 王君雅, 羊莹, 宁平. 碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响[J]. 环境工程学报, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095
WANG Junya, YANG Ying, NING Ping. Effect of alkali metal nitrates promoted LDH-based material for CO2 sorption performance[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095
Citation: WANG Junya, YANG Ying, NING Ping. Effect of alkali metal nitrates promoted LDH-based material for CO2 sorption performance[J]. Chinese Journal of Environmental Engineering, 2018, 12(12): 3379-3388. doi: 10.12030/j.cjee.201808095

碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响

  • 1. 昆明理工大学环境科学与工程学院,昆明650500
基金项目:

云南省教育厅科学研究基金项目(2017ZZX137)

昆工理工大学高层次人才平台建设项目(201722017)

国家自然科学基金青年基金项目(51802135)

摘要: 为进一步提高LDH基材料的CO2吸附性能以及吸-脱循环稳定性能,采用浸渍法将碱金属硝酸盐负载在LDH基材料上,分别探究了Mg/Al比、合成pH、碱金属硝酸盐种类和负载量等对其CO2吸附性能的影响。结果表明,当LDH中Mg/Al比例为20,合成pH为10,负载30% Li0.3Na0.18K0.52NO3后,在最佳煅烧温度500 ℃,最佳吸附温度260 ℃的条件下,其 CO2吸附量最大可达到4.64 mmol·g?1。另外,该材料在经历了10个吸-脱附循环过程后,表现出较好的循环稳定性能。通过分析可知,碱金属硝酸盐没有参与CO2吸附反应,碱金属硝酸盐的负载对LDH的CO2吸附性能有极大地促进作用。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回