餐厨垃圾不同“收集-处理”模式的碳排放估算对比

边潇, 宫徽, 阎中, 王凯军. 餐厨垃圾不同“收集-处理”模式的碳排放估算对比[J]. 环境工程学报, 2019, 13(2): 449-456. doi: 10.12030/j.cjee.201808009
引用本文: 边潇, 宫徽, 阎中, 王凯军. 餐厨垃圾不同“收集-处理”模式的碳排放估算对比[J]. 环境工程学报, 2019, 13(2): 449-456. doi: 10.12030/j.cjee.201808009
BIAN Xiao, GONG Hui, YAN Zhong, WANG Kaijun. Comparison of carbon emission estimation among different “collection-disposal” modes for food waste[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 449-456. doi: 10.12030/j.cjee.201808009
Citation: BIAN Xiao, GONG Hui, YAN Zhong, WANG Kaijun. Comparison of carbon emission estimation among different “collection-disposal” modes for food waste[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 449-456. doi: 10.12030/j.cjee.201808009

餐厨垃圾不同“收集-处理”模式的碳排放估算对比

  • 基金项目:

    国家科技支撑计划2014BAC27B01国家科技支撑计划(2014BAC27B01)

Comparison of carbon emission estimation among different “collection-disposal” modes for food waste

  • Fund Project:
  • 摘要: 为明确我国餐厨垃圾不同处理模式下碳排放情况,以中国南方某城市为研究对象,结合实地调研数据,对比研究了集中式好氧堆肥、集中式厌氧发酵和分散式好氧堆肥3种处理模式下的碳排放量。结果表明,集中式好氧堆肥的碳排放总量最高,而集中式厌氧发酵碳排放总量最低。此外,分散式好氧堆肥的主要优势在于可减少收集运输过程的碳排放且可避免其他温室气体的无组织排放;在先进节能手段和控制电耗的措施下,相比于集中式好氧堆肥模式,分散式模式可实现760.91 kg的碳减排(以CO2计)。然而,餐厨垃圾厌氧发酵模式因其可实现有机质产沼气,总碳减排空间是好氧堆肥的22倍,是一种绿色、低碳的餐厨垃圾处理方式,对实现餐厨垃圾资源化、无害化和减量化具有现实意义。
  • 加载中
  • [1] 刘建伟, 何岩. 餐厨垃圾两相厌氧发酵技术研究和应用进展[J]. 科学技术与工程, 2017, 17(6): 188-196.
    [2] 贡协伟, 刘响响. 餐厨垃圾处理技术研究进展[J]. 绿色科技, 2016(6): 62-63.
    [3] 张庆芳, 杨林海, 周丹丹. 餐厨垃圾废弃物处理技术概述[J]. 中国沼气, 2012, 30(1): 22-26.
    [4] MAEDEH P. SHAHA B, ADAM M, et al. Comparative economic and environmental assessments of centralizedand decentralised seawater desalination options [J]. Desalination, 2015, 376(16): 25-34.
    [5] 郑巧利, 王国芳, 刘婷婷. 餐厨垃圾资源化处理技术研究进展[J]. 科技创新导报, 2018, 15(7): 143-144.
    [6] AHAMED A, YIN K, NG B, et al. Life cycle assessment of the present and proposed food waste management technologies from environmental and economic impact perspectives[J]. Journal of Cleaner Production, 2016, 131: 607-614.
    [7] EVANS T D. Climate change impacts of food waste diversion to anaerobic digesters[J]. Proceedings of the Water Environment Federation, 2009, 3: 1056-1076.
    [8] BECKER A M, YU K, STADLER L B, et al. Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies[J]. Bioresource Technology, 2017, 223: 131-140.
    [9] 沈洪艳, 张相锋, 董世魁, 等. 餐厨垃圾和绿化废弃物好氧堆肥过程中温室气体排放研究[J]. 河南农业大学学报, 2013, 47(2): 202-205.
    [10] 郝晓地, 周鹏, 曹达啓. 餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报, 2017, 11(2): 673-682.
    [11] LUBETSKY J, STEINER B A, LANZA R. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Kanagawa: Institute for Global Environmental Strategies, 2006.
    [12] BERNSTAD A K, JANSEN J L C. Review of comparative LCAs of food waste management systems: Current status and potential improvements [J]. Waste Management, 2012, 32(12): 2439-2455.
    [13] 彭美春, 李嘉如, 胡红斐. 营运货车道路运行油耗及碳排放因子研究[J]. 汽车技术, 2015(4): 37-40.
    [14] 孟潇, 韩涛, 任连海, 等. 通风量对餐厨垃圾好氧堆肥的影响[J]. 食品科学技术学报, 2008, 26(3): 4-8.
    [15] 潘玲阳, 叶红, 黄少鹏, 等. 北京市生活垃圾处理的温室气体排放变化分析[J]. 环境科学与技术, 2010, 33(9): 116-124.
    [16] KIBLER K M, REINHART D, HAWKINS C, et al. Food waste and the food-energy-water nexus: A review of food waste management alternatives[J]. Waste Management, 2018, 74: 52-62.
    [17] 刘洪涛, 陈同斌, 杭世珺, 等. 不同污泥处理与处置工艺的碳排放分析[J]. 中国给水排水, 2010, 26(17): 106-108.
    [18] NGNIKAM E, TANAWA E, ROUSSEAUX P, et al. Evaluation of the potentialities to reduce greenhouse gases (GHG) emissions resulting from various treatments of municipal solid wastes (MSW) in moist tropical climates: Application to Yaounde[J]. Waste Management & Research, 2002, 20(6): 501-513.
    [19] YASIN N H M, MUMTAZ T, HASSAN M A, et al. Food waste and food processing waste for biohydrogen production: A review[J]. Journal of Environmental Management, 2013, 130(1): 375-385.
    [20] INGRAO C, FACCILONGO N, DI G L, et al. Food waste recovery into energy in a circular economy perspective: A comprehensive review of aspects related to plant operation and environmental assessment[J]. Journal of Cleaner Production, 2018,196: 869-892.
    [21] 李欢, 金宜英, 李洋洋. 生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011, 31(2): 259-264.
    [22] SAER A, LANSING S, DAVITT N H, et al. Life cycle assessment of a food waste composting system: environmental impact hotspots[J]. Journal of Cleaner Production, 2013, 52(4): 234-244.
    [23] BRITO L, COUTINHO J, SMITH S. Methods to improve the composting process of the solid fraction of dairy cattle slurry[J]. Bioresource Technology, 2008, 99(18): 8955-8960.
    [24] ENRIQUE C G, WALL D M, O'SHEA R, et al. An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico[J]. Journal of Cleaner Production, 2018, 196: 852-862.
    [25] 张国华, 张志红, 黄江丽, 等. 餐厨垃圾厌氧发酵连续产氢产甲烷的试验研究[J]. 中国沼气, 2016, 34(4): 8-12.
    [26] 张存胜. 厌氧发酵技术处理餐厨垃圾产沼气的研究[D]. 北京: 北京化工大学, 2013.
  • 加载中
计量
  • 文章访问数:  5279
  • HTML全文浏览数:  5192
  • PDF下载数:  295
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

餐厨垃圾不同“收集-处理”模式的碳排放估算对比

  • 1. 清华大学环境学院,环境模拟与污染控制国家重点联合实验室,北京 100084
基金项目:

国家科技支撑计划2014BAC27B01国家科技支撑计划(2014BAC27B01)

摘要: 为明确我国餐厨垃圾不同处理模式下碳排放情况,以中国南方某城市为研究对象,结合实地调研数据,对比研究了集中式好氧堆肥、集中式厌氧发酵和分散式好氧堆肥3种处理模式下的碳排放量。结果表明,集中式好氧堆肥的碳排放总量最高,而集中式厌氧发酵碳排放总量最低。此外,分散式好氧堆肥的主要优势在于可减少收集运输过程的碳排放且可避免其他温室气体的无组织排放;在先进节能手段和控制电耗的措施下,相比于集中式好氧堆肥模式,分散式模式可实现760.91 kg的碳减排(以CO2计)。然而,餐厨垃圾厌氧发酵模式因其可实现有机质产沼气,总碳减排空间是好氧堆肥的22倍,是一种绿色、低碳的餐厨垃圾处理方式,对实现餐厨垃圾资源化、无害化和减量化具有现实意义。

English Abstract

参考文献 (26)

目录

/

返回文章
返回