城市生活垃圾焚烧厂渗滤液产甲烷潜力

李进, 刘宗宽, 贺延龄. 城市生活垃圾焚烧厂渗滤液产甲烷潜力[J]. 环境工程学报, 2019, 13(2): 457-464. doi: 10.12030/j.cjee.201807196
引用本文: 李进, 刘宗宽, 贺延龄. 城市生活垃圾焚烧厂渗滤液产甲烷潜力[J]. 环境工程学报, 2019, 13(2): 457-464. doi: 10.12030/j.cjee.201807196
LI Jin, LIU Zongkuan, HE Yanling. Methane production potential of the leachate from municipal solid waste incineration plants[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 457-464. doi: 10.12030/j.cjee.201807196
Citation: LI Jin, LIU Zongkuan, HE Yanling. Methane production potential of the leachate from municipal solid waste incineration plants[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 457-464. doi: 10.12030/j.cjee.201807196

城市生活垃圾焚烧厂渗滤液产甲烷潜力

  • 基金项目:

    国家自然科学基金资助项目21176497

    陕西省水利厅重点项目2017slkj-91国家自然科学基金资助项目(21176497)

    陕西省水利厅重点项目(2017slkj-91)

Methane production potential of the leachate from municipal solid waste incineration plants

  • Fund Project:
  • 摘要: 为研究城市生活垃圾焚烧厂渗滤液的产甲烷潜力及其影响因素,在常规水质分析的基础上,采用瑞典AMPTSⅡ系统进行中温((37±1) ℃)厌氧消化实验,探究稀释倍数和污泥投加量对城市生活垃圾焚烧厂渗滤液的甲烷产率和可生物降解性的影响。结果表明:城市生活垃圾焚烧厂渗滤液的甲烷产率(以CH4/CODadd计)高于326.0 mL·g-1(理论甲烷产率为350 mL·g-1),可生物降解性高于93.1%;城市生活垃圾焚烧厂渗滤液是一种高COD、高NH3-N的有机废水,但可生化性较好;无论污泥投加量还是稀释倍数对城市生活垃圾焚烧厂渗滤液的甲烷产率和可生物降解性影响都很小,但稀释倍数的增加可明显降低污泥驯化时间和厌氧消化时间。在工程应用中,采用生化出水回流稀释城市生活垃圾焚烧厂渗滤液的方法,可降低厌氧反应器启动时间和厌氧消化时间,提高城市生活垃圾焚烧厂渗滤液处理效率。
  • 加载中
  • [1] YE J X, MU Y J, CHENG X, et al. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor[J]. Bioresource Technology, 2011, 102: 5498-5503.
    [2] LUO J H, QIAN G R, LIU J Y, et al. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 21-28.
    [3] DANG Y, ZHANG R, WU S J, et al. Calcium effect on anaerobic biological treatment of fresh leachate with extreme high calcium concentration[J]. International Biodeterioration & Biodegradation, 2014, 95: 76-83.
    [4] LIU J B, ZHANG P Y, LI H B, et al. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community[J]. Bioresource Technology, 2018, 250: 110-116.
    [5] LIU J Y, ZHONG J P, WANG Y L, et al. Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor[J]. Bioresource Technology, 2010, 101: 1447-1452.
    [6] 王爱莲, 李少东. 我国城市生活垃圾现状及处理研究[J]. 西安石油大学学报(社会科学版), 2012, 21(2): 58-63.
    [7] 浦燕新, 朱卫兵, 吴海锁, 等. 垃圾焚烧发电厂渗滤液处理工艺现状浅析[J]. 山东化工, 2015, 44(2): 130-133.
    [8] 柴娜. 城市生活垃圾焚烧厂渗滤液水质特点分析及主要渗滤液处理工艺综述[J]. 廊坊师范学院学报(自然科学版), 2012, 12(2): 49-51.
    [9] 中华人民共和国国家统计局. 中国统计年鉴(2011)[M]. 北京: 中国统计出版社, 2011.
    [10] 中华人民共和国国家统计局. 中国统计年鉴(2016)[M]. 北京: 中国统计出版社, 2016.
    [11] DANG Y, YE J X, MU Y J, et al. Effective anaerobic treatment of fresh from MSW incineration plant and dynamic characteristics of microbial community in granular sludge[J]. Environmental Biotechnology, 2013, 97: 10563-10574.
    [12] YE Z L, XIE X Q, DAI L H, et al. Full-scale blending treatment of fresh MSWI leachate with municipal wastewater in a wastewater treatment plant[J]. Waste Management, 2014, 34: 2305-2311.
    [13] 华佳, 柏双友, 张军. UASB-两级A/O-MBR工艺在生活垃圾焚烧发电厂渗滤液处理中的应用[J]. 给水排水, 2013, 39(12): 46-50.
    [14] 黄志聪. A/O/N-Fenton-BAF组合工艺处理垃圾焚烧厂渗滤液的研究[D]. 广州: 华南理工大学, 2013.
    [15] KOCH K, FERNáNDEZ Y B, DREWES J E. Influence of headspace flushing on methane production in biochemical methane potential (BMP) tests[J]. Bioresource Technology, 2015, 186: 173-178.
    [16] PECORINI I, BALDI F, CARNEVALE E A, et al. Biochemical methane potential tests of different autoclaved and microwaved lingocellulosic organic fractions of municipal solid waste[J]. Waste Management, 2016, 56: 143-150.
    [17] 张清. 城市生活垃圾卫生填埋场渗滤液厌氧处理工艺研究[D]. 西安: 长安大学, 2005.
    [18] WANG B, BJ?RN A, STR?MBERG S, et al. Evaluating the influences of mixing strategies on the biochemical methane potential test[J]. Journal of Environmental Management, 2017, 185: 54-59.
    [19] WANG T, HUANG Z X, RUAN W Q, et al. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system[J]. Science Direct, 2018, 64: 227-234.
    [20] LUO J H, ZHOU J Z, QIAN G R, et al. Effective anaerobic biodegradation of municipal solid waste fresh leachate using a novel pilot-cale reactor: Comparison under different seeding granular sludge[J]. Bioresource Technology, 2014, 165: 152-157.
    [21] GAO Y, SUN D Z, DANG Y, et al. Enhancing biomethanogenic treatment of fresh incineration leachate using single chambered microbial electrolysis cells[J]. Bioresource Technology, 2011, 102: 5466-5472.
    [22] LIU J Y, HU J, ZHONG J P, et al. The effect of calcium on the treatment of fresh leachate in an expanded granular sludge bed bioreactor[J]. Bioresource Technology, 2017, 231: 129-137.
    [23] 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 1998.
    [24] SILVA C D, ASTALS S, PECES M, et al. Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation[J]. Waste Management, 2018, 71: 19-24.
    [25] HOBBS S R, LANDIS A E, RITTMANN B E, et al. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: Inoculum ratios[J]. Waste Management, 2018, 71: 612-617.
    [26] PEARSE L F, HETTIARATCHI J P, KUMAR S, et al. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste: A review[J]. Bioresource Technology, 2018, 254: 312-328.
    [27] WANG B, NGES I A, NISTOR M, et al. Determination of methane yield of cellulose using different experimental setups[J]. Water Science & Technology, 2014, 70(4): 599-604.
    [28] BUSWELL A M, MUELLER H F. Mechanism of methane fermentation[J]. Industrial and Engineering Chemistry, 1952, 44(3): 550-552.
    [29] 吴莉娜, 徐莹莹, 史枭, 等. 短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液[J]. 环境科学研究, 2016, 29(4): 587-593.
    [30] 刘智萍, 方芳, ABDULHUSSAIN A A, 等. 高DOM渗滤液厌氧-好氧-混凝处理工艺[J]. 环境科学研究, 2010, 23(8): 1081-1085.
    [31] 胡玉英, 吴静, 王士峰, 等. 热处理对猪粪高固厌氧消化产甲烷能力的影响[J]. 环境科学, 2015, 36(8): 394-398.
  • 加载中
计量
  • 文章访问数:  3053
  • HTML全文浏览数:  3015
  • PDF下载数:  168
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

城市生活垃圾焚烧厂渗滤液产甲烷潜力

  • 1. 西安交通大学人居环境与建筑工程学院,西安 710049
基金项目:

国家自然科学基金资助项目21176497

陕西省水利厅重点项目2017slkj-91国家自然科学基金资助项目(21176497)

陕西省水利厅重点项目(2017slkj-91)

摘要: 为研究城市生活垃圾焚烧厂渗滤液的产甲烷潜力及其影响因素,在常规水质分析的基础上,采用瑞典AMPTSⅡ系统进行中温((37±1) ℃)厌氧消化实验,探究稀释倍数和污泥投加量对城市生活垃圾焚烧厂渗滤液的甲烷产率和可生物降解性的影响。结果表明:城市生活垃圾焚烧厂渗滤液的甲烷产率(以CH4/CODadd计)高于326.0 mL·g-1(理论甲烷产率为350 mL·g-1),可生物降解性高于93.1%;城市生活垃圾焚烧厂渗滤液是一种高COD、高NH3-N的有机废水,但可生化性较好;无论污泥投加量还是稀释倍数对城市生活垃圾焚烧厂渗滤液的甲烷产率和可生物降解性影响都很小,但稀释倍数的增加可明显降低污泥驯化时间和厌氧消化时间。在工程应用中,采用生化出水回流稀释城市生活垃圾焚烧厂渗滤液的方法,可降低厌氧反应器启动时间和厌氧消化时间,提高城市生活垃圾焚烧厂渗滤液处理效率。

English Abstract

参考文献 (31)

目录

/

返回文章
返回