改进一步法制备Cu/SAPO-34/堇青石催化剂及其脱硝效率

白鹏飞, 吴撼明, 王夫美, 沈伯雄. 改进一步法制备Cu/SAPO-34/堇青石催化剂及其脱硝效率[J]. 环境工程学报, 2018, 12(11): 3161-3168. doi: 10.12030/j.cjee.201807001
引用本文: 白鹏飞, 吴撼明, 王夫美, 沈伯雄. 改进一步法制备Cu/SAPO-34/堇青石催化剂及其脱硝效率[J]. 环境工程学报, 2018, 12(11): 3161-3168. doi: 10.12030/j.cjee.201807001
BAI Pengfei, WU Hanming, WANG Fumei, SHEN Boxiong. Preparation of Cu/SAPO-34/cordierite catalyst by improved one-step method and its denitration efficiency[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3161-3168. doi: 10.12030/j.cjee.201807001
Citation: BAI Pengfei, WU Hanming, WANG Fumei, SHEN Boxiong. Preparation of Cu/SAPO-34/cordierite catalyst by improved one-step method and its denitration efficiency[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3161-3168. doi: 10.12030/j.cjee.201807001

改进一步法制备Cu/SAPO-34/堇青石催化剂及其脱硝效率

  • 基金项目:

    科技部重点研发专项资助(2018YFB0605101,2018YFB0605100)

    天津市自然科学基金重点资助项目(18JCZDJC39800)

Preparation of Cu/SAPO-34/cordierite catalyst by improved one-step method and its denitration efficiency

  • Fund Project:
  • 摘要: 采用改进一步法制备堇青石整体式Cu/SAPO-34分子筛催化剂,考察了涂覆工艺中黏结剂和分散剂对整体式催化剂性能的影响,以求获得最优添加剂量以达到较高整体式催化剂脱硝效率。研究结果表明,相比于传统一步法,改进一步法工艺简单,涂层更均匀。黏结剂的加入明显提高涂层强度,其中铝溶胶效果最好。铝溶胶降低催化剂活性,酸性硅溶胶提高催化剂低温活性,碱性硅溶胶提高催化剂高温活性。分散剂提高了催化剂涂层强度和脱硝效率。添加17%酸性硅溶胶量所制备的Cu/SAPO-34催化剂具有最好的NO转化率,在30 000 h-1空速下,NO转化效率在90%以上的温度窗口为200~425 ℃,起燃温度为150 ℃,且具有较好的涂层强度。实验结果证明改进一步法脱硝效果较好,且工艺简单节省能源,可以为整体式催化剂的生产制备工艺提供参考。
  • 加载中
  • [1] GRANGER P, PARVULESCU V I.Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies[J].Chemical Reviews,2011, 111(5):3155-3207
    [2] MA Z,WU X D,FENG Y, et al.Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst[J].Materials International,2015,25(4): 342–352 10.1016/j.pnsc.2015.07.002
    [3] ZHAO X,HUANG L,Li H R,et al.Highly dispersed V2O5/TiO2 modified with transition metals (Cu,Fe,Mn,Co) as efficient catalysts for the selective reduction of NO with NH3[J].Chinese Journal of Catalysis,2015,36(11):1886–1899 10.1016/S1872-2067(15)60958-5
    [4] DEVADAS M, KR?CHER O, ELSENER M.Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR[J].Catalysis Today 2007,119(1): 137-144 10.1016/j.cattod.2006.08.018
    [5] GROSSALE A, NOVA I, TRONCONI E.Study of a Fe–zeolite-based system as NH3-SCR catalyst for diesel exhaust after treatment[J].Catalysis Today,2008, 136(1):18-27 10.1016/j.cattod.2007.10.117
    [6] BAIK J H, YIM S D, NAM I S, et al.Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea[J].Topics in Catalysis, 2004, 30-31(1/2/3/4):37-41
    [7] XUE J J, WANG X Q, QI G S, et al.Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature[J].Journal of Catalysis, 2013, 297(1):56-64
    [8] MARTíNEZ-FRANCO R, MOLINER M, FRANCH C, et al.Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx[J].Applied Catalysis B: Environmental, 2012, 127(17):273-280 10.1016/j.apcatb.2012.08.034
    [9] LI J H, CHANG H Z, MA L, et al.Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts: A review[J].Catalysis Today,2011,175(1):147-156
    [10] 唐韬,赵彦光,华伦,等.Cu-Fe复合沸石型SCR催化剂在重型柴油机上的应用研究[J]. 内燃机工程,2015,36(6):79-83
    [11] 郭学华,李英霞,陈健,等.蜂窝状整体式分子筛催化剂制备研究进展[J].环境科学与技术,2014,37(5):70-74
    [12] 曹群海,铈钨系SCR催化剂制备及涂覆方法研究[D].上海:上海交通大学,2014
    [13] 董文杰.NH3-SCR催化剂配方和蜂窝载体涂覆工艺研究[D].上海:上海交通大学,2013
    [14] LI F K, SHEN B X, TIAN L H, et al.Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica [J].Powder Technology, 2016, 297:384-391 10.1016/j.powtec.2016.04.050
    [15] 曹群海,林赫,管斌,等.TiCe0.2W0.2Ox型SCR催化剂涂覆方法研究[J]. 内燃机工程,2016,37(6): 86-92
    [16] LEISTNER K, OLSSON L.Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR[J].Applied Catalysis B: Environmental, 2015, 165:192-199 10.1016/j.apcatb.2014.09.067
    [17] 孔令涛, 沈本贤, 蒋章. 硅含量对氯甲烷制取低碳烯烃的SAPO-34分子筛酸性的影响[J]. 化工进展, 2015, 34(2):413-418
    [18] MANE R B, GHALWADKAR A A, HENGNE A M, et al.Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol[J].Catalysis Today, 2011, 164(1):447-450 10.1016/j.cattod.2010.10.032
    [19] SZANYI J, OH S H, HEO I, et al.Improved thermal stability of a copper-containing ceria-based catalyst for low temperature CO oxidation under simulated diesel exhaust conditions[J].Catalysis Science & Technology, 2018, 8(5):1383-1394
    [20] 范得权. 一步法合成Cu/SAPO-34催化剂SCR活性,水热稳定性以及涂覆工艺研究[D]. 天津:天津大学, 2016
    [21] 李凯,蜂窝状Mn-Ce/Ti/CC脱硝催化剂的涂覆技术及性能研究[D]. 太原:太原理工大学,2013
  • 加载中
计量
  • 文章访问数:  3329
  • HTML全文浏览数:  3137
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

改进一步法制备Cu/SAPO-34/堇青石催化剂及其脱硝效率

  • 1. 河北工业大学能源与环境工程学院,天津300401
  • 2. 中国汽车技术研究中心有限公司,天津 3004300
基金项目:

科技部重点研发专项资助(2018YFB0605101,2018YFB0605100)

天津市自然科学基金重点资助项目(18JCZDJC39800)

摘要: 采用改进一步法制备堇青石整体式Cu/SAPO-34分子筛催化剂,考察了涂覆工艺中黏结剂和分散剂对整体式催化剂性能的影响,以求获得最优添加剂量以达到较高整体式催化剂脱硝效率。研究结果表明,相比于传统一步法,改进一步法工艺简单,涂层更均匀。黏结剂的加入明显提高涂层强度,其中铝溶胶效果最好。铝溶胶降低催化剂活性,酸性硅溶胶提高催化剂低温活性,碱性硅溶胶提高催化剂高温活性。分散剂提高了催化剂涂层强度和脱硝效率。添加17%酸性硅溶胶量所制备的Cu/SAPO-34催化剂具有最好的NO转化率,在30 000 h-1空速下,NO转化效率在90%以上的温度窗口为200~425 ℃,起燃温度为150 ℃,且具有较好的涂层强度。实验结果证明改进一步法脱硝效果较好,且工艺简单节省能源,可以为整体式催化剂的生产制备工艺提供参考。

English Abstract

参考文献 (21)

目录

/

返回文章
返回