[1] |
GRANGER P, PARVULESCU V I.Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies[J].Chemical Reviews,2011, 111(5):3155-3207
|
[2] |
MA Z,WU X D,FENG Y, et al.Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst[J].Materials International,2015,25(4): 342–352 10.1016/j.pnsc.2015.07.002
|
[3] |
ZHAO X,HUANG L,Li H R,et al.Highly dispersed V2O5/TiO2 modified with transition metals (Cu,Fe,Mn,Co) as efficient catalysts for the selective reduction of NO with NH3[J].Chinese Journal of Catalysis,2015,36(11):1886–1899 10.1016/S1872-2067(15)60958-5
|
[4] |
DEVADAS M, KR?CHER O, ELSENER M.Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR[J].Catalysis Today 2007,119(1): 137-144 10.1016/j.cattod.2006.08.018
|
[5] |
GROSSALE A, NOVA I, TRONCONI E.Study of a Fe–zeolite-based system as NH3-SCR catalyst for diesel exhaust after treatment[J].Catalysis Today,2008, 136(1):18-27 10.1016/j.cattod.2007.10.117
|
[6] |
BAIK J H, YIM S D, NAM I S, et al.Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea[J].Topics in Catalysis, 2004, 30-31(1/2/3/4):37-41
|
[7] |
XUE J J, WANG X Q, QI G S, et al.Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature[J].Journal of Catalysis, 2013, 297(1):56-64
|
[8] |
MARTíNEZ-FRANCO R, MOLINER M, FRANCH C, et al.Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx[J].Applied Catalysis B: Environmental, 2012, 127(17):273-280 10.1016/j.apcatb.2012.08.034
|
[9] |
LI J H, CHANG H Z, MA L, et al.Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts: A review[J].Catalysis Today,2011,175(1):147-156
|
[10] |
唐韬,赵彦光,华伦,等.Cu-Fe复合沸石型SCR催化剂在重型柴油机上的应用研究[J]. 内燃机工程,2015,36(6):79-83
|
[11] |
郭学华,李英霞,陈健,等.蜂窝状整体式分子筛催化剂制备研究进展[J].环境科学与技术,2014,37(5):70-74
|
[12] |
曹群海,铈钨系SCR催化剂制备及涂覆方法研究[D].上海:上海交通大学,2014
|
[13] |
董文杰.NH3-SCR催化剂配方和蜂窝载体涂覆工艺研究[D].上海:上海交通大学,2013
|
[14] |
LI F K, SHEN B X, TIAN L H, et al.Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica [J].Powder Technology, 2016, 297:384-391 10.1016/j.powtec.2016.04.050
|
[15] |
曹群海,林赫,管斌,等.TiCe0.2W0.2Ox型SCR催化剂涂覆方法研究[J]. 内燃机工程,2016,37(6): 86-92
|
[16] |
LEISTNER K, OLSSON L.Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR[J].Applied Catalysis B: Environmental, 2015, 165:192-199 10.1016/j.apcatb.2014.09.067
|
[17] |
孔令涛, 沈本贤, 蒋章. 硅含量对氯甲烷制取低碳烯烃的SAPO-34分子筛酸性的影响[J]. 化工进展, 2015, 34(2):413-418
|
[18] |
MANE R B, GHALWADKAR A A, HENGNE A M, et al.Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol[J].Catalysis Today, 2011, 164(1):447-450 10.1016/j.cattod.2010.10.032
|
[19] |
SZANYI J, OH S H, HEO I, et al.Improved thermal stability of a copper-containing ceria-based catalyst for low temperature CO oxidation under simulated diesel exhaust conditions[J].Catalysis Science & Technology, 2018, 8(5):1383-1394
|
[20] |
范得权. 一步法合成Cu/SAPO-34催化剂SCR活性,水热稳定性以及涂覆工艺研究[D]. 天津:天津大学, 2016
|
[21] |
李凯,蜂窝状Mn-Ce/Ti/CC脱硝催化剂的涂覆技术及性能研究[D]. 太原:太原理工大学,2013
|