SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析

王启镔, 苑泉, 宫徽, 姚仁达, 秦亚, 刘祥, 徐恒, 王凯军. SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080
引用本文: 王启镔, 苑泉, 宫徽, 姚仁达, 秦亚, 刘祥, 徐恒, 王凯军. SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080
WANG Qibin, YUAN Quan, GONG Hui, YAO Renda, QIN Ya, LIU Xiang, XU Heng, WANG Kaijun. Characteristics and microorganism analysis of aerobic granular sludge cultivated by SBR systems with low-strength sewage[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080
Citation: WANG Qibin, YUAN Quan, GONG Hui, YAO Renda, QIN Ya, LIU Xiang, XU Heng, WANG Kaijun. Characteristics and microorganism analysis of aerobic granular sludge cultivated by SBR systems with low-strength sewage[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080

SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析

  • 基金项目:

Characteristics and microorganism analysis of aerobic granular sludge cultivated by SBR systems with low-strength sewage

  • Fund Project:
  • 摘要: 分别采用两段式装置(升流式水解酸化池+SBR(R1))和一段式SBR(R2及R3)小试装置,处理实际污水(R1及R2)及人工配水(R3),考察了不同水源对好氧颗粒污泥的粒径分布、沉降性能以及微生物群落的影响。结果显示,大多数颗粒的粒径均集中在0.12~0.3 mm之间,在R1、R2及R3中的占比分别为32.78%、38.61%和50.28%。当粒径介于0.3~0.5 mm、大于0.5 mm时,R1与R2中的颗粒分配均显著高于R3中的颗粒分配。结果表明,低浓度人工配水(COD均值480 mg·L-1)易形成中等粒径的颗粒,而低浓度实际污水(COD均值173 mg·L-1)更易形成较大的颗粒。当体积交换比从90%降为50%,R1和R3的 SVI30/SVI5维持在0.85以上,R2的SVI30/SVI5出现下降的趋势,这可能是进水中较高的悬浮颗粒引起的污泥轻微膨胀所致。3个主反应器取污泥(分别记S1、S2及S3)进行高通量分析,氨氧化菌Nitrosomonas、 氨氧化古菌Nitrososphaera、 反硝化聚磷菌 Dechloromonas等脱氮除磷优势菌属在S1、S2中的相对比例明显高于在S3中的相对比例。 丝状菌方面,在有机负荷率(OLR)较低条件(0.91 kg· (m3·d)-1)下,有利于Aquaspirillum、Enhydrobacter的生长,而较高的OLR(>0.91 kg· (m3·d)-1)有利于Acinetobacter的生长。污水中多种类的有机物,不仅有利于形成致密的胞外聚合物,而且可提高脱氮除磷优势菌属在颗粒污泥中的相对比例。
  • 加载中
  • [1] MUSZYNSKI A, MILOBEDZKA A.The effects of carbon/phosphorus ratio on polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge[J].International Journal of Environmental Science and Technology,2015,12(9):3053-3060 10.1007/s13762-015-0828-8
    [2] 苑泉, 吴远远, 金正宇, 等. 水解酸化对好氧颗粒污泥形成及脱氮除磷的影响[J]. 环境科学研究,2018,31(2):360-368
    [3] 彭永臻, 吴蕾, 马勇, 等. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学,2010,31(2):273-281
    [4] NANCHARAIAH Y V, REDDY G K K.Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications[J].Bioresource Technology,2018,247:1128-1143 10.1016/j.biortech.2017.09.131
    [5] CORSINO S F,DI BIASE A, DEVLIN T R, et al.Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater[J].Bioresource technology,2017,226:150-157 10.1016/j.biortech.2016.12.026
    [6] CALUWE M, DOBBELEERS T, D’AES J, et al.Formation of aerobic granular sludge during the treatment of petrochemical wastewater[J].Bioresource Technology,2017,238:559-567 10.1016/j.biortech.2017.04.068
    [7] ARROJO B, MOSQUERA-CORRAL A, GARRIDO J M, et al.Aerobic granulation with industrial wastewater in sequencing batch reactors[J].Water Research,2004,38(14/15):3389-3399 10.1016/j.watres.2004.05.002
    [8] 魏燕杰, 季民, 李国一,等. 好氧颗粒污泥SBR处理垃圾渗滤液的污泥理化特性分析[J]. 天津大学学报,2012,45(6):522-528
    [9] BENGTSSON S, DE BLOIS M, WILEN B, et al.Treatment of municipal wastewater with aerobic granular sludge[J].Critical Reviews in Environmental Science and Technology,2018,48(2):119-166 10.1080/10643389.2018.1439653
    [10] COMA M, VERAWATY M, PIJUAN M, et al.Enhancing aerobic granulation for biological nutrient removal from domestic wastewater[J].Bioresource Technology,2012,103(1):101-108 10.1016/j.biortech.2011.10.014
    [11] 季民, 李超, 张云霞,等. 厌氧-好氧颗粒污泥SBR处理城市污水的中试研究[J]. 环境工程学报,2010,4(6):1276-1282
    [12] 杨淑芳, 张健君, 邹高龙, 等. 实际污水培养好氧颗粒污泥及其特性研究[J]. 环境科学,2014,35(5):1850-1856
    [13] PRONK M,DE KREUK M, DE BRUIN B, et al.Full scale performance of the aerobic granular sludge process for sewage treatment [J].Water Research,2015,84:207-217 10.1016/j.watres.2015.07.011
    [14] ZHOU D, ZHAO Y.Study on forming aerobic granular sludge on domestic sewage [C]// IEEE. 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet),2011:3580-3583 10.1109/CECNET.2011. 5769454
    [15] WANG Q, YAO R, YUAN Q, et al.Aerobic granules cultivated with simultaneous feeding/draw mode and low-strength wastewater: Performance and bacterial community analysis[J].Bioresource Technology,2018,261:232-239 10.1016/ j.biortech.2018.04.002
    [16] 郗皓. 基于好氧污泥颗粒化的深度脱氮工艺研发[D]. 北京: 清华大学,2015
    [17] GUJER W, HENZE M, MINO T, et al.Activated sludge model No. 3[J].Water Science and Technology,1999,39(1):183-193 10.1016/S0273-1223(98)00785-9
    [18] ADAV S S, LEE D J, SHOW K Y, et al.Aerobic granular sludge: Recent advances[J].Biotechnology Advances,2008,26(5):411-423 10.1016/j.biotechadv.2008.05.002
    [19] KANG A J, YUAN Q.Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads[J].Bioresource Technology,2017,234:336-342 10.1016/j.biortech.2017.03.057
    [20] 王建龙, 张子健, 吴伟伟. 好氧颗粒污泥的研究进展[J]. 环境科学学报,2009,29(3):449-473
    [21] DE KREUK M K, KISHIDA N, TSUNEDA S, et al.Behavior of polymeric substrates in an aerobic granular sludge system[J].Water Research,2010,44(20):5929-5938 10.1016/j.watres.2010.07.033
    [22] BEUN J, VAN LOOSDRECHT M, HEIJNEN J.Aerobic granulation in a sequencing batch airlift reactor [J].Water Research,2002,36(3):702-712 10.1016/S0043-1354(01)00250-0
    [23] FERRERA I, SANCHEZ O.Insights into microbial diversity in wastewater treatment systems: How far have we come?[J].Biotechnology Advances,2016,34(5):790-802 10.1016/j.biotechadv.2016.04.003
    [24] YANG X P, WANG S M, ZHANG D W, et al.Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1[J].Bioresource Technology,2011,102(2):854-862 10.1016/j.biortech.2010.09.007
    [25] SAEID A, LABUDA M, CHOJNACKA K, et al.Biotechnological processes in production of phosphorus fertilizers[J].Przemysl Chemiczny,2012,91(5):952-955
    [26] GOMEZ-GUZMAN A, JIMENEZ-MAGANA S, GUERRA-RENTERIA A S, et al.Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents[J].Water Science and Technology,2017,76(1):49-56 10.2166/wst.2017.175
    [27] KIM J M, LEE H J, LEE D S, et al.Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal[J].Applied and Environmental Microbiology,2013,79(6):1969-1979 10.1128/AEM.03464-12
    [28] LEMAIRE R, YUAN Z, BLACKALL L, et al.Microbial distribution of Accumulibacter spp.and Competibacter spp.in aerobic granules from a lab-scale biological nutrient removal system [J].Environmental Microbiology,2008,10(2):354-363 10.1111/j.1462-2920.2007.01456.x
    [29] GAO P, XU W, SONTAG P, et al.Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China[J].Applied Microbiology and Biotechnology,2016,100(10):4663-4673 10.1007/s00253-016-7307-0
    [30] 王凯军,许晓鸣. 丝状菌污泥膨胀理论分析[J]. 中国给水排水,2001,17(3):66-69
    [31] 王凯军. 高负荷活性污泥膨胀控制的试验研究[J]. 给水排水,1999,25(11):3挰栭渳漳氼潢杲社????????????代???????????ㄧ???知珻瓟??ザヌ??㏄???拌爝??孹?ㄆ嶐???吮?亯??????刲???匬?????唲????唲券??丼????敛琳″慝氠??晏映敆挬琠獚?潁晎?栠楔朮桐?捯潦湩捬敩湮瑧爠慢瑵楬潫湩?楧渠晡汮畤攠湦瑯?獭畩獮灧攠湢摡散摴?獲潩污椠摩獮?潡湣?慩敶牡潴扥楤挠?杬牵慤湧略氠慢瑹椠潨湩?楨渠?灨楲汯潵瑧?獰捵慴氠敳?獱敵煥畮散湩据楧湛杊?戮慗瑡捴桥?爠敒慥捳瑥潡牲獣?琬爲攰愱琲椬渴朶?爸攩愺氲?搷漲洭攲猷琸椲挠?眰愮猱琰攱眶愯瑪攮牷?孴?嵥?圮愲琰攱爲?到攲献攰愳爹挼桢?资??????????????????????橃?睁慌瑌爠敌猠?水???????ぅ???扏牎??嬬??嵴?坡??乔?剥????坡??卮却?創佳?呭????????乥?啥?乫?噬??敯瑭?慴汹??映昱攸挶琳?潩晳?灮慯牴琠楡挠畳汩慮瑧敬?漠牧来慮湥楴捩?猠略扮獴瑩牴慹瑛敊?漮湊?慵敲牮潡扬椠捯?朠牁慰湰畬汩慥瑤椠潍湩?慲湯摢?潯灬敯牧慹琬椱渹朹?挬漸渲搨椴琩椺漴渱猱?漴昲?猠攱焰甮攱渰挴椶港杪?戱愳琶挵栭′父攷愲挮琱漹爹猷嬮?崰?圱愱琮數爼?割放猠敛愳爵捝栠??ぅ??????ㄠ????????げ?ㄠきㄠ??樠?睉慅瑌牓故獎??????ぴ??ど?び?扯牮?the in situ physiology of Thiothrix spp.present in activated sludge[J].Environmental Microbiology,2000,2(4):389-398 10.1046/j.1462-2920.2000.00120.x
    [32] HOWARTH R, UNZ R F, SEVIOUR E M, et al.Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp.and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp nov., Thiothrix unzii sp nov., Thiothrix fructosivorans sp nov and Thiothrix defluvii sp nov[J].International Journal of Systematic Bacteriology,1999,49:1817-1827 10.1099/00207713-49-4-1817
    [33] BLACKALL L L, HARBERS A E, GREENFIELD P F, et al.Foaming in activated sludge plants: A survey in queensland, australia and an evaluation of some control strategies[J].Water Research,1991,25(3):313-317 10.1016/0043-1354(91)90011-E
    [34] LIU J R, BURRELL P, SEVIOUR E M, et al.The filamentous bacterial morphotype ’Nostocoida limicola’ I contains at least two previously described genera in the low G+C gram positive bacteria[J].Systematic and Applied Microbiology,2000,23(4):528-534 10.1016/S0723-2020(00)80027-2
    [35] MIELCZAREK A T, KRAGELUND C, ERIKSEN P S, et al.Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal[J].Water Research,2012,46(12):3781-3795 10.1016/j.watres.2012.04.009
    [36] THOMSEN T R, KRAGELUND C, NIELSEN P H.Identity, abundance and physiology of Aquaspirillum-related filamentous bacteria in activated sludge[J].Water Science and Te
  • 加载中
计量
  • 文章访问数:  4200
  • HTML全文浏览数:  4051
  • PDF下载数:  131
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12

SBR系统在低浓度污水条件下培养的好氧颗粒污泥特性及微生物分析

  • 1. 清华大学环境学院,环境模拟与污染控制国家重点联合实验室,北京 100084
  • 2. 富国皮革工业股份有限公司,上海 201900
基金项目:

摘要: 分别采用两段式装置(升流式水解酸化池+SBR(R1))和一段式SBR(R2及R3)小试装置,处理实际污水(R1及R2)及人工配水(R3),考察了不同水源对好氧颗粒污泥的粒径分布、沉降性能以及微生物群落的影响。结果显示,大多数颗粒的粒径均集中在0.12~0.3 mm之间,在R1、R2及R3中的占比分别为32.78%、38.61%和50.28%。当粒径介于0.3~0.5 mm、大于0.5 mm时,R1与R2中的颗粒分配均显著高于R3中的颗粒分配。结果表明,低浓度人工配水(COD均值480 mg·L-1)易形成中等粒径的颗粒,而低浓度实际污水(COD均值173 mg·L-1)更易形成较大的颗粒。当体积交换比从90%降为50%,R1和R3的 SVI30/SVI5维持在0.85以上,R2的SVI30/SVI5出现下降的趋势,这可能是进水中较高的悬浮颗粒引起的污泥轻微膨胀所致。3个主反应器取污泥(分别记S1、S2及S3)进行高通量分析,氨氧化菌Nitrosomonas、 氨氧化古菌Nitrososphaera、 反硝化聚磷菌 Dechloromonas等脱氮除磷优势菌属在S1、S2中的相对比例明显高于在S3中的相对比例。 丝状菌方面,在有机负荷率(OLR)较低条件(0.91 kg· (m3·d)-1)下,有利于Aquaspirillum、Enhydrobacter的生长,而较高的OLR(>0.91 kg· (m3·d)-1)有利于Acinetobacter的生长。污水中多种类的有机物,不仅有利于形成致密的胞外聚合物,而且可提高脱氮除磷优势菌属在颗粒污泥中的相对比例。

English Abstract

参考文献 (36)

目录

/

返回文章
返回