[1]
|
MASUM B M, MASJUKI H H, KALAM M A, et al.Effect of alcohol-gasoline blends optimization on fuel properties, performance and emissions of a SI engine[J].Journal of Cleaner Production, 2015, 86: 230-237
|
[2]
|
AGARWAL A K, SHUKLA P C, GUPTA J G, et al.Unregulated emissions from a gasohol (E5, E15, M5, and M15) fuelled spark ignition engine[J].Applied Energy, 2015, 154(15): 732-741
|
[3]
|
CORRêA S M, ARBILLA G, MARTINS E M, et al.Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area-Brazil[J].Atmospheric Environment, 2010, 44(19): 2302-2308
|
[4]
|
VISKARI E L, VARTIAINEN M, PASANEN P.Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland[J].Atmospheric Environment, 2000, 34(6): 917-923
|
[5]
|
WESTERMANN A, AZAMBRE B, FINQUENEISEL G, et al.Evolution of unburnt hydrocarbons under ‘cold-start’ conditions from adsorption/desorption to conversion: On the screening of zeolitic materials[J].Applied Catalysis B: Environmental, 2014, 158: 48-59
|
[6]
|
ZHANG B, JI C W, WANG S F, et al.Investigation on the cold start characteristics of a hydrogen-enriched methanol engine[J].International Journal of Hydrogen Energy, 2014, 39(26): 14466-14471
|
[7]
|
CORRêA S M, MARTINS E M, ARBILLA G.Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil[J].Atmospheric Environment, 2003, 37(1): 23-29
|
[8]
|
CORRêA S M, ARBILLA G.Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles[J].Atmospheric Environment, 2005, 39(25): 4513-4518
|
[9]
|
BORSARI V, ASSUN??O J V.Nitrous oxide emissions from gasohol, ethanol and CNG light duty vehicles[J].Climatic Change, 2012, 111(3/4): 519-531
|
[10]
|
IODICE P, SENATORE A, LANGELLA G, et al.Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation[J].Applied Energy, 2016, 179: 182-190
|
[11]
|
LEE J, RYOU Y S, CHO J S, et al.Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment[J].Applied Catalysis B: Environmental, 2018, 226: 71-82
|
[12]
|
VáCLAVíK M, KO?í P, NOVáK V, et al.NOx conversion and selectivity in multi-layer and sequential DOC-LNT automotive exhaust catalysts: Influence of internal transport[J].Chemical Engineering Journal, 2017, 329: 128-134
|
[13]
|
RAHMAN M M, KIM K H.Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems[J].Journal of Hazardous Materials, 2012, 241 (4): 267-278
|
[14]
|
OLIVEIRA R L, LOYOLA J, MINHO A S, et al.PM2.5-bound polycyclic aromatic hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline[J].Bulletin of Environmental Contamination and Toxicology, 2014, 93(6): 781-786
|
[15]
|
DEMIRBAS A.Progress and recent trends in biodiesel fuels[J].Energy Conversion and Management, 2009, 50(1): 14-34
|
[16]
|
JIAO J L, LI J J, BAI Y.Ethanol as a vehicle fuel in China: A review from the perspectives of raw material resource, vehicle, and infrastructure[J].Journal of Cleaner Production, 2018, 180: 832-845
|
[17]
|
HEBBEN N, DIEHM C, DEUTSCHMANN O.Catalytic partial oxidation of ethanol on alumina-supported rhodium catalysts: An experimental study[J].Applied Catalysis A: General, 2010, 388(1): 225-231
|
[18]
|
DEWILDE J F, CZOPINSKI C J, BHAN A.Ethanol dehydration and dehydrogenation on γ-Al2O3: Mechanism of acetaldehyde formation[J].ACS Catalysis, 2014, 4(12): 4425-4433
|
[19]
|
NAVLANIGARCíA M, PUéRTOLAS B, LOZANOCASTELLó D, et al.CuH-ZSM-5 as hydrocarbon trap under cold start conditions[J].Environmental Science & Technology, 2013, 47(11): 5851-5857
|
[20]
|
PUéRTOLAS B, LóPEZ J M, NAVARRO M V, et al.Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions[J].Adsorption, 2013, 19(2/3/4): 357-365
|
[21]
|
PUéRTOLAS B, GARCíA-ANDúJAR L, GARCíA T, et al.Bifunctional Cu/H-ZSM-5 zeolite?atement under cold-start conditions[J].Applied Catalysis B: Environmental, 2014, 154 (5): 161-170
|
[22]
|
USHIKI I, OTA M, SATO Y, et al.VOCs (acetone, toluene, and n-hexane) adsorption equilibria on mesoporous silica (MCM-41) over a wide range of supercritical carbon dioxide conditions: Experimental and theoretical approach by the Dubinin-Astakhov equation[J].Fluid Phase Equilibria, 2015, 403: 78-84
|
[23]
|
RINTRAMEE K, F?TTINGER K, RUPPRECHTER G, et al.Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41[J].Applied Catalysis B: Environmental, 2012, 115: 225-235
|
[24]
|
ABU-ZIED B M, HUSSEIN M A, ASIRI A M, et al.Development and characterization of the composites based on mesoporous MCM-41 and polyethylene glycol and their properties[J].Composites Part B: Engineering, 2014, 58(3): 185-192
|
[25]
|
ZHOU C Y, GAO Q, LUO W J, et al.Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash[J].Journal of the Taiwan Institute of Chemical Engineers, 2015, 52(3): 147-157
|
[26]
|
LI X D, ZHAI Q Z, ZOU M Q.Optical properties of (nanometer MCM-41)-(malachite green) composite materials[J].Applied Surface Science, 2010, 257(3): 1134-1140
|
[27]
|
BAUR G B, YURANOV I, KIWI-MINSKER L.Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde[J].Catalysis Today, 2015, 249: 252-258
|
[28]
|
KLETT C, DUTEN X, TIENG S, et al.Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process[J].Journal of Hazardous Materials, 2014, 279: 356-364
|
[29]
|
WANG H Y, SUN Y F, ZHU T L, et al.Adsorption of acetaldehyde onto carbide-derived carbon modified by oxidation[J].Chemical Engineering Journal, 2015, 273: 580-587
|
[30]
|
LIU J Y, ZHAO M, XU C H, et al.Ultrasonic-assisted fabrication and catalytic activity of CeZrAl oxide-supported Pd for the purification of gasohol exhaust[J].Chinese
|