Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能

李俊洁, 刘建英, 胡晓东, 徐成华, 刘盛余, 张雪乔, 魏荣. Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能[J]. 环境工程学报, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014
引用本文: 李俊洁, 刘建英, 胡晓东, 徐成华, 刘盛余, 张雪乔, 魏荣. Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能[J]. 环境工程学报, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014
LI Junjie, LIU Jianying, HU Xiaodong, XU Chenghua, LIU Shengyu, ZHANG Xueqiao, WEI Rong. Adsorption and catalytic oxidation properties of Pd/ MCM-41 for acetaldehyde in gasohol exhausts[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014
Citation: LI Junjie, LIU Jianying, HU Xiaodong, XU Chenghua, LIU Shengyu, ZHANG Xueqiao, WEI Rong. Adsorption and catalytic oxidation properties of Pd/ MCM-41 for acetaldehyde in gasohol exhausts[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014

Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能

  • 基金项目:

    国家自然科学基金资助项目(51608061)

    四川省科技厅资助项目(2015JY0113)

    成都信息工程大学资助项目(J201712)

Adsorption and catalytic oxidation properties of Pd/ MCM-41 for acetaldehyde in gasohol exhausts

  • Fund Project:
  • 摘要: 以正硅酸乙酯 (TEOS)为硅源,十六烷基三甲基溴化铵 (CTAB)为模板剂,采用水热合成法制备了MCM-41分子筛,以其为载体采用等体积浸渍法制得Pd/MCM-41催化剂,并用于乙醇汽油车冷启动排放乙醛的净化。采用氮气吸附脱附法(BET)、X射线衍射仪(XRD)、透射电子显微镜(TEM)对Pd/MCM-41理化性能进行表征,并用原位傅里叶变换红外技术研究了Pd/MCM-41在空气氛围下对乙醛的净化机理。结果表明:Pd/MCM-41具有规整的六方孔道、孔径分布均匀、比表面积大的特点;常温下,Pd/MCM-41催化剂可快速吸附乙醛,吸附容量可达105 mg·g-1,而吸附在Pd/MCM-41上的乙醛在180~220 ℃之间即可发生氧化而生成CO2和乙酸。
  • 加载中
  • [1] MASUM B M, MASJUKI H H, KALAM M A, et al.Effect of alcohol-gasoline blends optimization on fuel properties, performance and emissions of a SI engine[J].Journal of Cleaner Production, 2015, 86: 230-237
    [2] AGARWAL A K, SHUKLA P C, GUPTA J G, et al.Unregulated emissions from a gasohol (E5, E15, M5, and M15) fuelled spark ignition engine[J].Applied Energy, 2015, 154(15): 732-741
    [3] CORRêA S M, ARBILLA G, MARTINS E M, et al.Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area-Brazil[J].Atmospheric Environment, 2010, 44(19): 2302-2308
    [4] VISKARI E L, VARTIAINEN M, PASANEN P.Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland[J].Atmospheric Environment, 2000, 34(6): 917-923
    [5] WESTERMANN A, AZAMBRE B, FINQUENEISEL G, et al.Evolution of unburnt hydrocarbons under ‘cold-start’ conditions from adsorption/desorption to conversion: On the screening of zeolitic materials[J].Applied Catalysis B: Environmental, 2014, 158: 48-59
    [6] ZHANG B, JI C W, WANG S F, et al.Investigation on the cold start characteristics of a hydrogen-enriched methanol engine[J].International Journal of Hydrogen Energy, 2014, 39(26): 14466-14471
    [7] CORRêA S M, MARTINS E M, ARBILLA G.Formaldehyde and acetaldehyde in a high traffic street of Rio de Janeiro, Brazil[J].Atmospheric Environment, 2003, 37(1): 23-29
    [8] CORRêA S M, ARBILLA G.Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles[J].Atmospheric Environment, 2005, 39(25): 4513-4518
    [9] BORSARI V, ASSUN??O J V.Nitrous oxide emissions from gasohol, ethanol and CNG light duty vehicles[J].Climatic Change, 2012, 111(3/4): 519-531
    [10] IODICE P, SENATORE A, LANGELLA G, et al.Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation[J].Applied Energy, 2016, 179: 182-190
    [11] LEE J, RYOU Y S, CHO J S, et al.Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment[J].Applied Catalysis B: Environmental, 2018, 226: 71-82
    [12] VáCLAVíK M, KO?í P, NOVáK V, et al.NOx conversion and selectivity in multi-layer and sequential DOC-LNT automotive exhaust catalysts: Influence of internal transport[J].Chemical Engineering Journal, 2017, 329: 128-134
    [13] RAHMAN M M, KIM K H.Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems[J].Journal of Hazardous Materials, 2012, 241 (4): 267-278
    [14] OLIVEIRA R L, LOYOLA J, MINHO A S, et al.PM2.5-bound polycyclic aromatic hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline[J].Bulletin of Environmental Contamination and Toxicology, 2014, 93(6): 781-786
    [15] DEMIRBAS A.Progress and recent trends in biodiesel fuels[J].Energy Conversion and Management, 2009, 50(1): 14-34
    [16] JIAO J L, LI J J, BAI Y.Ethanol as a vehicle fuel in China: A review from the perspectives of raw material resource, vehicle, and infrastructure[J].Journal of Cleaner Production, 2018, 180: 832-845
    [17] HEBBEN N, DIEHM C, DEUTSCHMANN O.Catalytic partial oxidation of ethanol on alumina-supported rhodium catalysts: An experimental study[J].Applied Catalysis A: General, 2010, 388(1): 225-231
    [18] DEWILDE J F, CZOPINSKI C J, BHAN A.Ethanol dehydration and dehydrogenation on γ-Al2O3: Mechanism of acetaldehyde formation[J].ACS Catalysis, 2014, 4(12): 4425-4433
    [19] NAVLANIGARCíA M, PUéRTOLAS B, LOZANOCASTELLó D, et al.CuH-ZSM-5 as hydrocarbon trap under cold start conditions[J].Environmental Science & Technology, 2013, 47(11): 5851-5857
    [20] PUéRTOLAS B, LóPEZ J M, NAVARRO M V, et al.Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions[J].Adsorption, 2013, 19(2/3/4): 357-365
    [21] PUéRTOLAS B, GARCíA-ANDúJAR L, GARCíA T, et al.Bifunctional Cu/H-ZSM-5 zeolite?atement under cold-start conditions[J].Applied Catalysis B: Environmental, 2014, 154 (5): 161-170
    [22] USHIKI I, OTA M, SATO Y, et al.VOCs (acetone, toluene, and n-hexane) adsorption equilibria on mesoporous silica (MCM-41) over a wide range of supercritical carbon dioxide conditions: Experimental and theoretical approach by the Dubinin-Astakhov equation[J].Fluid Phase Equilibria, 2015, 403: 78-84
    [23] RINTRAMEE K, F?TTINGER K, RUPPRECHTER G, et al.Ethanol adsorption and oxidation on bimetallic catalysts containing platinum and base metal oxide supported on MCM-41[J].Applied Catalysis B: Environmental, 2012, 115: 225-235
    [24] ABU-ZIED B M, HUSSEIN M A, ASIRI A M, et al.Development and characterization of the composites based on mesoporous MCM-41 and polyethylene glycol and their properties[J].Composites Part B: Engineering, 2014, 58(3): 185-192
    [25] ZHOU C Y, GAO Q, LUO W J, et al.Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash[J].Journal of the Taiwan Institute of Chemical Engineers, 2015, 52(3): 147-157
    [26] LI X D, ZHAI Q Z, ZOU M Q.Optical properties of (nanometer MCM-41)-(malachite green) composite materials[J].Applied Surface Science, 2010, 257(3): 1134-1140
    [27] BAUR G B, YURANOV I, KIWI-MINSKER L.Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde[J].Catalysis Today, 2015, 249: 252-258
    [28] KLETT C, DUTEN X, TIENG S, et al.Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process[J].Journal of Hazardous Materials, 2014, 279: 356-364
    [29] WANG H Y, SUN Y F, ZHU T L, et al.Adsorption of acetaldehyde onto carbide-derived carbon modified by oxidation[J].Chemical Engineering Journal, 2015, 273: 580-587
    [30] LIU J Y, ZHAO M, XU C H, et al.Ultrasonic-assisted fabrication and catalytic activity of CeZrAl oxide-supported Pd for the purification of gasohol exhaust[J].Chinese
  • 加载中
计量
  • 文章访问数:  2210
  • HTML全文浏览数:  2085
  • PDF下载数:  126
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20
李俊洁, 刘建英, 胡晓东, 徐成华, 刘盛余, 张雪乔, 魏荣. Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能[J]. 环境工程学报, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014
引用本文: 李俊洁, 刘建英, 胡晓东, 徐成华, 刘盛余, 张雪乔, 魏荣. Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能[J]. 环境工程学报, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014
LI Junjie, LIU Jianying, HU Xiaodong, XU Chenghua, LIU Shengyu, ZHANG Xueqiao, WEI Rong. Adsorption and catalytic oxidation properties of Pd/ MCM-41 for acetaldehyde in gasohol exhausts[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014
Citation: LI Junjie, LIU Jianying, HU Xiaodong, XU Chenghua, LIU Shengyu, ZHANG Xueqiao, WEI Rong. Adsorption and catalytic oxidation properties of Pd/ MCM-41 for acetaldehyde in gasohol exhausts[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2558-2565. doi: 10.12030/j.cjee.201805014

Pd/MCM-41对乙醇汽油车尾气排放乙醛的吸附和催化氧化性能

  • 1. 成都信息工程大学资源环境学院,成都 610225
基金项目:

国家自然科学基金资助项目(51608061)

四川省科技厅资助项目(2015JY0113)

成都信息工程大学资助项目(J201712)

摘要: 以正硅酸乙酯 (TEOS)为硅源,十六烷基三甲基溴化铵 (CTAB)为模板剂,采用水热合成法制备了MCM-41分子筛,以其为载体采用等体积浸渍法制得Pd/MCM-41催化剂,并用于乙醇汽油车冷启动排放乙醛的净化。采用氮气吸附脱附法(BET)、X射线衍射仪(XRD)、透射电子显微镜(TEM)对Pd/MCM-41理化性能进行表征,并用原位傅里叶变换红外技术研究了Pd/MCM-41在空气氛围下对乙醛的净化机理。结果表明:Pd/MCM-41具有规整的六方孔道、孔径分布均匀、比表面积大的特点;常温下,Pd/MCM-41催化剂可快速吸附乙醛,吸附容量可达105 mg·g-1,而吸附在Pd/MCM-41上的乙醛在180~220 ℃之间即可发生氧化而生成CO2和乙酸。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回