基于超声波机械搅拌耦合作用下赤泥对二氧化碳的固化封存

南相莉, 李凤华, 胡恩柱. 基于超声波机械搅拌耦合作用下赤泥对二氧化碳的固化封存[J]. 环境工程学报, 2018, 12(10): 2973-2979. doi: 10.12030/j.cjee.201805010
引用本文: 南相莉, 李凤华, 胡恩柱. 基于超声波机械搅拌耦合作用下赤泥对二氧化碳的固化封存[J]. 环境工程学报, 2018, 12(10): 2973-2979. doi: 10.12030/j.cjee.201805010
NAN Xiangli, LI Fenghua, HU Enzhu. CO2 sequestration by red mud under coupling effect of ultrasonic wave and mechanical agitation[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2973-2979. doi: 10.12030/j.cjee.201805010
Citation: NAN Xiangli, LI Fenghua, HU Enzhu. CO2 sequestration by red mud under coupling effect of ultrasonic wave and mechanical agitation[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2973-2979. doi: 10.12030/j.cjee.201805010

基于超声波机械搅拌耦合作用下赤泥对二氧化碳的固化封存

  • 基金项目:

    辽宁省自然科学基金资助项目(201602250)

    中央高校基本科研业务专项资金资助(N172504021)

CO2 sequestration by red mud under coupling effect of ultrasonic wave and mechanical agitation

  • Fund Project:
  • 摘要: 以拜耳法赤泥为二氧化碳(CO2)固化剂,提出了基于超声波机械搅拌耦合作用下赤泥吸收二氧化碳的新思路,以期实现“以废治废”、行业气固两类废弃物得到高效综合利用的目标。以拜耳赤泥吸收低浓度二氧化硫的前期研究为基础,自行设计了超声波与机械搅拌耦合作用的鼓泡反应器,利用其“空化作用”与机械搅拌的耦合作用促进赤泥对低浓度二氧化碳的高效吸收。考察了在焙烧条件、温度、搅拌桨转速、液固比、气体流量、超声波功率对赤泥吸收二氧化碳的影响规律,得到最优条件,焙烧后可以大大提高赤泥对CO2的固定能力,单独机械搅拌作用下,赤泥吸收CO2适宜的条件为:反应温度25 ℃、气体流量0.025 m3·h-1、液固比为6:1和搅拌转速150 r·min-1,此时最大固碳量为71.72 g·kg-1,加入超声波后固碳效果进一步提高,最佳超声波功率为600 W。
  • 加载中
  • [1] ADNAN K,YAVUZ S D.CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis[J].Economic Modelling,2015,33:97-103 10.1016/j.econmod.2014.10.022
    [2] LIANG G J, CHEN W M, NGUY A V, et al.Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and setting[J].Journal of Colloid and Interface Science,2018,517(3):230-238 10.1016/j.jcis.2018.02.006
    [3] 王海洋,张建良,王广伟,等. 铁前系统的二氧化碳减排技术浅析[J].中国冶金,2018(1):1-6
    [4] WHIT C M,STRAZISAR B R,GRANITE E J, et al.Separation and capture of CO2 from large stationary sources and sequestration in geological formation-coalbeds and deep saline aquifers[J].Journal of the Air & Waste Management Association,2003,53(6):645-715 10.1080/10473289.2003.10466207
    [5] ENICK R M,BECKMAN E J,SHI A C, et al.Remediation of metal-bearing aqueous waste streams via direct carbonation [J].Energy & Fuels,2001,15(2):256-262 10.1021/ef000245x
    [6] RAMESH C S, RAJ K Pl, BANKIM C R.Neutralization of red mud using CO2 sequestration cycle[J].Journal of Hazardous Materials,2010,179(1):28-34 10.1016/j.jhazmat.2010.02.052
    [7] BONENFANT D,KHAROUNE L,SAUVE S, et al.CO2 sequestration potential of steel slags at ambient pressure and temperature[J].Industrial & Engineering Chemistry Research,2008,47:7610-7616 10.1021/ie701721j
    [8] 朱晓波,李望,管学茂,等. 拜耳法赤泥脱碱研究现状[J]. 硅酸盐通报,2014,33(9):2254-2257
    [9] LI R B, ZHANG T A, LIU Y, et al.Characteristics of red mud slurry flow in carbonation reactor[J].Powder Technology,2017,311:66-76 10.1016/j.powtec.2016.11.028
    [10] 南相莉,张廷安,刘燕,等. 我国赤泥的综合利用分析[J]. 过程工程学报,2010,10(1):264-270
    [11] LIU Q, XIN R R, LI C C, et al.Application of red mud as a basic catalyst for biodiesel production[J].Journal of Environmental Sciences,2013,25(4):823-829 10.1016/S1001-0742(12)60067-9
    [12] 南相莉,张延安,刘燕,等. 我国主要赤泥种类及其对环境的影响[J].过程工程学报,2009,9(1):459-464
    [13] KLAUBER C,GRAEFE M,POWER G.Bauxite residue issues: II.Options for residue utilization[J].Hydrometallurgy,2011,108(1/2):11-32 10.1016/j.hydromet.2011.02.007
    [14] 冯若,姚锦钟,关立勋. 超声波手册[M]. 南京:南京大学出版社,1996
    [15] SUCHITA R,WASEWAR K L,MUKHOPADHYAY J, et al.Neutralization and utilization of red mud for its better waste management[J].Archives of Environmental Science,2012,6:13-33
    [16] RIVERA R M, OUNOUGHENE G,BORRA C R, et al.Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery[J].Minerals Engineering,2017,112:92-102 10.1016/j.mineng.2017.07.011
    [17] FOIS E,ANTONIO L A, MURA G.Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud[J].Industrial & Engineering Chemistry Research,2006,46(21):6770-6776 10.1021/ie0616904
    [18] NAN X L, ZHANG T A.Study on absorption of low-concentration SO2 with basic slag intensified by ultrasonic wave[J].TMS Light Metals,2012,510(1):219-223
    [19] BONENFANT D, KHAROUNE L, HAUSLER R, et al.CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature[J].Industrial & Engineering Chemistry Research,2008,47(20):7617-7622 10.1021/ie7017228
    [20] 张彦娜,潘志华.不同温度下赤泥的物理化学特征分析[J]. 济南大学学报,2005,19(4):293-297
    [21] 陈红霞,孙恒虎,李化建.热处理温度对赤泥胶凝活性的影响[J]. 轻金属,2006(9):22-25
    [22] 曹沁波,罗斌,程金华,等.一种新型周边辐射超声波的浮选设备:CN205308587U[P].2016-06-15
  • 加载中
计量
  • 文章访问数:  1983
  • HTML全文浏览数:  1894
  • PDF下载数:  134
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

基于超声波机械搅拌耦合作用下赤泥对二氧化碳的固化封存

  • 1. 东北大学冶金学院, 沈阳 110819
基金项目:

辽宁省自然科学基金资助项目(201602250)

中央高校基本科研业务专项资金资助(N172504021)

摘要: 以拜耳法赤泥为二氧化碳(CO2)固化剂,提出了基于超声波机械搅拌耦合作用下赤泥吸收二氧化碳的新思路,以期实现“以废治废”、行业气固两类废弃物得到高效综合利用的目标。以拜耳赤泥吸收低浓度二氧化硫的前期研究为基础,自行设计了超声波与机械搅拌耦合作用的鼓泡反应器,利用其“空化作用”与机械搅拌的耦合作用促进赤泥对低浓度二氧化碳的高效吸收。考察了在焙烧条件、温度、搅拌桨转速、液固比、气体流量、超声波功率对赤泥吸收二氧化碳的影响规律,得到最优条件,焙烧后可以大大提高赤泥对CO2的固定能力,单独机械搅拌作用下,赤泥吸收CO2适宜的条件为:反应温度25 ℃、气体流量0.025 m3·h-1、液固比为6:1和搅拌转速150 r·min-1,此时最大固碳量为71.72 g·kg-1,加入超声波后固碳效果进一步提高,最佳超声波功率为600 W。

English Abstract

参考文献 (22)

目录

/

返回文章
返回