转炉钢渣中铁组分的氧化改质与磁选回收

蒋亮, 韩霄, 董福元, 刘贵群, 侯俊峰, 陈宇红, 韩凤兰. 转炉钢渣中铁组分的氧化改质与磁选回收[J]. 环境工程学报, 2018, 12(9): 2664-2671. doi: 10.12030/j.cjee.201804131
引用本文: 蒋亮, 韩霄, 董福元, 刘贵群, 侯俊峰, 陈宇红, 韩凤兰. 转炉钢渣中铁组分的氧化改质与磁选回收[J]. 环境工程学报, 2018, 12(9): 2664-2671. doi: 10.12030/j.cjee.201804131
JIANG Liang, HAN Xiao, DONG Fuyuan, LIU Guiqun, HOU Junfeng, CHEN Yuhong, HAN Fenglan. Oxidation modification and magnetic separation of iron component in converter steel slag[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2664-2671. doi: 10.12030/j.cjee.201804131
Citation: JIANG Liang, HAN Xiao, DONG Fuyuan, LIU Guiqun, HOU Junfeng, CHEN Yuhong, HAN Fenglan. Oxidation modification and magnetic separation of iron component in converter steel slag[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2664-2671. doi: 10.12030/j.cjee.201804131

转炉钢渣中铁组分的氧化改质与磁选回收

  • 基金项目:

    宁夏科技支撑计划项目(亿吨级哈萨克斯坦铜冶炼渣的综合利用技术研究)

    2017年度北方民族大学中央高校基本科研业务费专项资金资助(2017KY01)

Oxidation modification and magnetic separation of iron component in converter steel slag

  • Fund Project:
  • 摘要: 在不同工艺参数下对转炉钢渣进行了固相氧化改质,并对改质后钢渣进行了磁选处理,分析对比了干式磁选和湿式磁选对改质钢渣的磁选效果。实验结果表明:通过氧化改质处理,能够使钢渣中无磁性铁氧化物向有磁性镁铁尖晶石发生转变,后者可通过磁选进行有效分离。原钢渣进行氧化改质的最佳加热温度和气体通入速率分别为1 100 ℃和7.5 L·min-1。钢渣通过固相改质后,更容易获得高回收率的高品位精矿,对钢渣的磁选宜为湿式弱磁选,实验范围内磁选工艺的最佳磁感应强度为0.102 T。在加热温度1 100 ℃,保温时间30 min,气体通入速率7.5 L·min-1的条件下,改质钢渣产率达到22%,铁品位达到62%,回收率达到64.95%。
  • 加载中
  • [1] REDDY A S, PRADHAN R, CHANDRA S.Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder[J].International Journal of Mineral Processing, 2006,79(2):98-105 10.1016/j.minpro.2006.01.001
    [2] 于先坤, 杨洪, 华绍广. 冶金固废资源化利用现状及发展[J]. 金属矿山,2015,44(2):177-180
    [3] 杨绍利. 冶金概论[M]. 北京: 冶金工业出版社, 2008
    [4] 杨合, 孙旭, 刘东,等. 选铁尾矿和钛精矿直接还原-磁选工艺回收铁实验研究[J]. 材料热处理学报, 2014,35(4):90-95
    [5] ZHANG L N, ZHANG L, WANG M Y, et al.Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content[J].Transactions of Nonferrous Metals Society of China, 2005,15(4):938-943
    [6] SEMYKINA A, SHATOKHA V, SEETHARAMAN S.Innovative approach to recovery of iron from steelmaking slags[J].Ironmaking & Steelmaking, 2013,37(7):536-540 10.1179/030192310X12690127076479
    [7] SEMYKINA A, SHATOKHA V, IWASE M, et al.Kinetics of oxidation of divalent iron to trivalent state in liquid FeO-CaO-SiO2 slags[J].Metallurgical and Materials Transactions B, 2010,41(6):1230-1239 10.1007/s11663-010-9425-x
    [8] SEMYKINA A, NAKANO J, SRIDHAR S, et al.Confocal microscopic studies on evolution of crystals during oxidation of the FeO-CaO-SiO2-MnO slags[J].Metallurgical and Materials Transactions B, 2010,41(5):940-945 10.1007/s11663-010-9392-2
    [9] SEMYKINA A.The kinetics of oxidation of liquid FeO-MnO-CaO-SiO2 slags in air[J].Metallurgical and Materials Transactions B, 2012,43(1):56-63 10.1007/s11663-011-9576-4
    [10] 侯新凯, 贺宁, 袁静舒. 钢渣中二价金属氧化物固溶体的选别性研究[J]. 硅酸盐学报, 2013,41(8):1142
    [11] 薛鹏,贺东风,徐安军,等. 改质转炉渣中MgFe2O4的形成与磁选提铁[J]. 钢铁, 2017,52(7):104-110
    [12] XUE P, HE D, XU A, et al.Modification of industrial BOF slag: Formation of MgFe2O4 and recycling of iron[J].Journal of Alloys and Compounds, 2017,712:640-648 10.1016/j.jallcom.2017.04.142
    [13] JIANG L, BAO Y W, YANG Q X, et al.Formation of spinel phases in oxidized BOF slag under different cooling conditions[J].Steel Research International, 2017,88(11):1-12 10.1002/srin.201700066
    [14] JIANG L, BAO Y W, HU X F, et al.Experimental investigation on BOF slag oxidation in air[J].Ironmaking & Steelmaking 2018,(1):1-8 10.1080/03019233.2017.1410945
    [15] CHEN Y, JIANG L, YANG Q, et al.Identification of Fe-containing phase in oxidation process of BOF slag[J].Key Engineering Materials, 2017,726:564-568 10.4028/www.scientific.net/KEM.726.564
    [16] DARKEN L, GURRY R.The system iron-oxygen.I.The wustite field and related equilibria[J].Journal of the American Chemical Society, 1945,67(8):1398-1412 10.1021/ja01224a050
    [17] 李建新. 高温重构对钢渣组成, 结构与性能影响的研究[D]. 广州: 华南理工大学, 2011
    [18] JIANG L, BAO Y W, CHEN Y H, et al.Kinetics of the oxidation modification process of CaO-SiO2-FeO-MgO slag [J].Material Review B: Research, 2017,32(2):650-671
    [19] YADAV U, PANDEY B, DAS B, et al.Influence of magnesia on sintering characteristics of iron ore[J].Ironmaking & Steelmaking, 2013,29(2):91-95 10.1179/030192302225002018
    [20] SHU Q F, LIU Y.Effects of basicity, MgO and MnO on mineralogical phases of CaO-FeOx-SiO2-P2O5 slag[J].Ironmaking & Steelmaking,2017,45(4):1-8 10.1080/03019233.2016.1274463
    [21] 史长亮, 张兵豪, 张义顺,等. 微粉钢渣磁性质及干式磁选试验研究[J]. 矿业研究与开发, 2015,35(7):44-47
    [22] 谢建宏, 李慧. 转炉废渣中铁的再选回收利用研究[J]. 现代矿业,2010(3):50-52
    [23] 鲁慧慧. 转炉钢渣回收铁试验研究[D]. 西安: 西安建筑科技大学, 2010
    [24] LI C, SUN H, BAI J, et al.Innovative methodology for comprehensive utilization of iron ore tailings: Part 1.The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J].Journal of Hazardous Materials, 2010,174(1):71-77 10.1016/j.jhazmat.2009.09.018
    [25] WANG D Y, JIANG M F, LIU C J, et al.Enrichment of Fe-containing phases and recovery of iron and its oxides by magnetic separation from BOF slags[J].Steel Research International, 2012,83(2):189-196 10.1002/srin.201100216
    [26] DIAO J, XIE B, JI C, et al.Growth of spinel crystals in vanadium slag and their characterization[J].Crystal Research & Technology, 2009,44(7):707-712 10.1002/crat.200900131
    [27] 沈威, 黄文熙, 闵盘荣. 水泥工艺学[M].北京:中国建筑工业出版社, 1986
  • 加载中
计量
  • 文章访问数:  2498
  • HTML全文浏览数:  2382
  • PDF下载数:  127
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

转炉钢渣中铁组分的氧化改质与磁选回收

  • 1. 北方民族大学材料科学与工程学院,银川 750021
  • 2. 中国建筑材料科学研究总院绿色建材重点实验室,北京 100024
基金项目:

宁夏科技支撑计划项目(亿吨级哈萨克斯坦铜冶炼渣的综合利用技术研究)

2017年度北方民族大学中央高校基本科研业务费专项资金资助(2017KY01)

摘要: 在不同工艺参数下对转炉钢渣进行了固相氧化改质,并对改质后钢渣进行了磁选处理,分析对比了干式磁选和湿式磁选对改质钢渣的磁选效果。实验结果表明:通过氧化改质处理,能够使钢渣中无磁性铁氧化物向有磁性镁铁尖晶石发生转变,后者可通过磁选进行有效分离。原钢渣进行氧化改质的最佳加热温度和气体通入速率分别为1 100 ℃和7.5 L·min-1。钢渣通过固相改质后,更容易获得高回收率的高品位精矿,对钢渣的磁选宜为湿式弱磁选,实验范围内磁选工艺的最佳磁感应强度为0.102 T。在加热温度1 100 ℃,保温时间30 min,气体通入速率7.5 L·min-1的条件下,改质钢渣产率达到22%,铁品位达到62%,回收率达到64.95%。

English Abstract

参考文献 (27)

目录

/

返回文章
返回