碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控

林子雨, 党岩, 刘钊, 孙德智. 碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控[J]. 环境工程学报, 2018, 12(8): 2178-2184. doi: 10.12030/j.cjee.201803051
引用本文: 林子雨, 党岩, 刘钊, 孙德智. 碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控[J]. 环境工程学报, 2018, 12(8): 2178-2184. doi: 10.12030/j.cjee.201803051
LIN Ziyu, DANG Yan, LIU Zhao, SUN Dezhi. Effects of carbon source and COD/N on nitrous oxide production during treatment of leachate from MSW incineration plant by short cut denitrification and its regulation[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2178-2184. doi: 10.12030/j.cjee.201803051
Citation: LIN Ziyu, DANG Yan, LIU Zhao, SUN Dezhi. Effects of carbon source and COD/N on nitrous oxide production during treatment of leachate from MSW incineration plant by short cut denitrification and its regulation[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2178-2184. doi: 10.12030/j.cjee.201803051

碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控

  • 基金项目:

Effects of carbon source and COD/N on nitrous oxide production during treatment of leachate from MSW incineration plant by short cut denitrification and its regulation

  • Fund Project:
  • 摘要: 采用短程硝化反硝化工艺处理垃圾焚烧渗沥液厌氧出水,研究反硝化过程中碳源种类(乙酸钠、甲醇、葡萄糖)和碳氮比(1.5、2.5、3.5、5.0)对N2O产生的影响,以实现N2O的高效产生。结果表明,反硝化系统中N2O的产生受外加碳源种类和碳氮比影响较大。在反硝化所需碳氮比(COD/N=5.0)条件下,高效产N2O的碳源种类为乙酸钠,N2O转化率为6.9%。以乙酸钠为碳源,在碳氮比为3.5时N2O产量最大,N2O转化率可达15%。通过最佳产N2O条件下微生物群落分析发现,一些有助于N2O产生的反硝化菌得到富集。因此,通过碳源和COD/N等参数的调控,能够实现垃圾焚烧渗沥液反硝化段N2O的高效产生。
  • 加载中
  • [1] SCHERSON Y D, WELLS G F, WOO S, et al.Nitrogen removal with energy recovery through N2O decomposition[J].Energy & Environmental Science,2013,6(1):241-248 10.1039/C2EE22487A
    [2] SCHERSON Y D, ROA A, DARLING G, et al.Sidestream treatment with energy recovery from nitrogen waste: The coupled aerobic-anoxic nitrous decomposition operation (CANDO)[J].Proceedings of the Water Environment Federation,2014,9:1114-1125 10.2175/193864714815941298
    [3] CHUNG C Y, CHUNG M S.BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification[J].Water Science and Technology,2000,42(3):23-27
    [4] CHEN Y, WEN Y, CHENG J, et al.Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: Implications for denitrification in constructed wetlands[J].Bioresource Technology,2011,102(3):2433-2440 10.1016/j.biortech.2010.10.122
    [5] VAN R J, TAL Y, BARAK Y.Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J].Applied and Environmental Microbiology,1996,62(7):2615-2620
    [6] WU G X, ZHAI X, JIANG C, et al.Effect of ammonium on nitrous oxide emission during denitrification with different electron donors[J].Journal of Environmental Sciences,2013,25(6):1131-1138 10.1016/S1001-0742(12)60164-8
    [7] KISHIDA N, KIM J H, KIMOCHI Y, et al.Effect of COD/N ratio on nitrous oxide emission from swine wastewater treatment process[J].Water Science and Technology,2004,49(5):359-371 10.2166/wst.2004.0775
    [8] ITOKAWA H, HANAKI K, MATSUO T.Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J].Water Research,2001,35(3):657-664 10.1016/S0043-1354(00)00309-2
    [9] ITOKAWA H, HANAKI K, MATSUO T.Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J].Water Research,2001,35(3):657-664 10.1016/0043-1354(95)00204-9
    [10] FU Z, YANG F, ZHOU F, et al.Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater[J].Bioresource Technology,2008,100(1):136-141 10.1016/j.biortech.2008.06.006
    [11] 贾文林.同步硝化反硝化过程中N2O释放特征及其机理研究[D].济南:山东大学,2013
    [12] ESCHBACH M, SCHREIBER K, TRUNK K, et al.Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation[J].Journal of Bacteriology,2004,186(14):4596-4604
    [13] THIRD K A, BURNETT N, CORD-RUWISCH R.Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J].Biotechnology and Bioengineering,2003,83(6):706-720 10.1002/bit.10708
    [14] JONES C M, STRES B, ROSENQUIST M, et al.Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification[J].Molecular Biology and Evolution, 2008, 25(9): 1955-1966
    [15] ZHAO W, WANG Y, LIU S, et al.Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J].Chemical Engineering Journal, 2013, 215-216(3): 252-260
    [16] AHN J H, KWAN T, CHANDRAN K.Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: Microbial ecology through nitrous oxide production[J].Environmental Science & Technology,2011,45(7):2734-2740 10.1021/es103534g
    [17] FOLEY J, DE HASS D, YUAN Z, et al.Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J].Water Research,2009,44(3):831-843 10.1016/j.watres.2009.10.033
    [18] MANEFIELD M, WHITELEY A S, GRIFFITHS R I, et al.RNA Stable isotope probing, a novel means of linking microbial community function to phylogeny[J].Applied and Environmental Microbiology,2002,68(11):5367-5373
    [19] PHILIPPOT L, MIRLEAU P, MAZURIER S, et al.Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes[J].Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2001,1517(3):436-440 10.1016/S0167-4781(00)00286-4
    [20] SPRING S, JACKEL U, WAGNER M, et al.Ottowia thiooxydans gen.nov., sp.nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen.nov., comb.nov[J].International Journal of Systematic and Evolutionary Microbiology,2004,54(1):99-106 10.1099/ijs.0.02727-0
  • 加载中
计量
  • 文章访问数:  3627
  • HTML全文浏览数:  3387
  • PDF下载数:  167
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-08-17

碳源和COD/N对短程反硝化处理垃圾焚烧渗沥液产N2O的影响与调控

  • 1. 北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,污染水体源控与生态修复技术北京市高等学校工程研究中心,北京 100083
基金项目:

摘要: 采用短程硝化反硝化工艺处理垃圾焚烧渗沥液厌氧出水,研究反硝化过程中碳源种类(乙酸钠、甲醇、葡萄糖)和碳氮比(1.5、2.5、3.5、5.0)对N2O产生的影响,以实现N2O的高效产生。结果表明,反硝化系统中N2O的产生受外加碳源种类和碳氮比影响较大。在反硝化所需碳氮比(COD/N=5.0)条件下,高效产N2O的碳源种类为乙酸钠,N2O转化率为6.9%。以乙酸钠为碳源,在碳氮比为3.5时N2O产量最大,N2O转化率可达15%。通过最佳产N2O条件下微生物群落分析发现,一些有助于N2O产生的反硝化菌得到富集。因此,通过碳源和COD/N等参数的调控,能够实现垃圾焚烧渗沥液反硝化段N2O的高效产生。

English Abstract

参考文献 (20)

目录

/

返回文章
返回