Processing math: 100%

污泥厌氧消化反应器CFD数值模拟研究进展

曹秀芹, 徐国庆, 袁海光, 江坤, 仇付国, 尹伟齐, 付昆明. 污泥厌氧消化反应器CFD数值模拟研究进展[J]. 环境工程学报, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001
引用本文: 曹秀芹, 徐国庆, 袁海光, 江坤, 仇付国, 尹伟齐, 付昆明. 污泥厌氧消化反应器CFD数值模拟研究进展[J]. 环境工程学报, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001
CAO Xiuqin, XU Guoqing, YUAN Haiguang, JIANG Kun, QIU Fuguo, YIN Weiqi, FU Kunming. A critical review on CFD simulation of anaerobic digestion reactor for sewage sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001
Citation: CAO Xiuqin, XU Guoqing, YUAN Haiguang, JIANG Kun, QIU Fuguo, YIN Weiqi, FU Kunming. A critical review on CFD simulation of anaerobic digestion reactor for sewage sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001

污泥厌氧消化反应器CFD数值模拟研究进展

  • 基金项目:

    北京市教委(北京市自然科学基金)科技重点项目(KZ201310016017)

    北京建筑大学市属高校基本科研业务费专项资金资助 (X18182)

A critical review on CFD simulation of anaerobic digestion reactor for sewage sludge

  • Fund Project:
  • 摘要: 污泥作为典型的不透明非牛顿流体,在厌氧消化反应器内的流场具有复杂性,难以直接进行流场测试分析。结合计算流体力学(CFD)技术,分析污泥厌氧消化反应器内的流场分布情况,探讨污泥在反应器内混合效果和对消化过程的影响,以验证校核反应器优化设计和运行,改善污泥在消化反应器内的流动和混合性能并最终提高反应器性能。在综合文献及前期研究工作的基础上,系统分析并重点关注了CFD数值模拟过程当中多相流模型和湍流模型的选取、污泥流变特性应用、反应器流场评估优化及耦合生化模型等的研究现状及进展,最后总结了目前污泥厌氧消化反应器CFD数值模拟过程存在的问题。并指出在考量污泥流变学特性的基础上,利用传质模型将反应器流场和生化过程相耦合,构建流场-生化耦合模型,获取基质转化规律,为优化污泥厌氧消化反应器设计运行提供理论依据,是CFD应用于厌氧消化反应器数值模拟的发展方向。
  • 近年来,水生植物(如水葫芦、浮萍、香蒲、芦苇、苦草等)在水环境污染治理领域得到了广泛的研究与应用[1-4]。其中,浮萍是浮萍科(Lemnaceae)植物的统称,具有生长快、营养价值高、用途广泛等特点,备受关注[5]。有研究表明,在污水治理方面,浮萍比水葫芦更具有应用优势,能有效地将废水中的污染物转化为高品质生物质,其生物质可作为高蛋白饲料和生物质能源原料开发利用[2, 6-7];此外,浮萍还具有易打捞、适应能力和污染物吸收能力强等特点[7-9]。然而,基于浮萍构建的浮萍塘处理系统仍存在污染物去除效率低,占地面积大的问题,使得该技术更适合在土地资源充足的发展中国家及广大农村地区使用[10]。浮萍塘的污染物去除效率低既与浮萍根系短,与水体接触面积小有关[7, 11],也与浮萍垫层阻碍氧气向水体扩增,使得水体溶解氧(dissolved oxygen, DO)含量降低有关[12]。有研究[13]表明,DO是影响生态工程处理系统(氧化塘、生态浮床、人工湿地等)污染物去除效果的重要因素,提高DO是促进此类系统污染物去除的有效途径之一[14],其中普遍采用的手段为微曝气技术[15]。研究者普遍认为,微曝气能够增加生态浮床系统水体DO,提高水体中微生物活性,促进植物生长及对氮、磷营养物的吸收和去除,从而改善水质状况[16]。此外,微曝气还能改善生态浮床系统水动力条件,促使水体氮、磷营养物能充分与植物根部接触而被吸收去除[17]

    在浮萍塘系统中,因浮萍垫层的阻隔作用使水体DO不足的问题尤为突出[18]。因此,曝气处理是提高水体DO和污染物去除率的有效措施之一。然而,目前相关研究较少,且仅有的少量研究所获得的结果也不理想。例如,BEN-SHALOM等[19]的研究表明,浮萍塘中直接曝气对污染物的去除无显著促进作用。这可能与浮萍个体较小,易受曝气扰动有关。可见,在浮萍塘中直接曝气并不可取,而进水前实施预曝气处理,通过增加进水的DO来改善浮萍塘水体溶氧状况,可有效避免塘中直接曝气对浮萍造成影响。同时,考虑到曝气成本较高,选择合适的预曝气时长对降低成本极为关键,但目前尚缺乏有用的参考信息。

    基于上述原因,本研究拟在浮萍塘前端引入曝气塘,构建中试曝气塘-浮萍塘联合系统,对浮萍塘进水进行预曝气处理,通过设置不同曝气时长实验组,考察曝气时长对污染物去除及浮萍生长的影响,探寻低耗高效的最佳曝气时长,为曝气塘-浮萍塘联合系统在农村污水处理中的应用提供参考。

    本实验在距滇池东岸100 m(纬度24°51′N,经度102°47′E,海拔1 888 m)的实验基地开展。处理系统为1个表面积为8.6 m2(3.2 m×2.7 m×1.7 m)的曝气塘和5个表面积为12 m2(24 m×0.5 m×0.6 m)的浮萍塘,曝气塘底部放置功率为0.75 kW的潜水曝气装置(上海艺巨,中国)和功率为1.1 kW的潜水抽水泵(重庆恒格尔,中国),抽水泵的出水端与浮萍塘进水端通过管道连接,浮萍塘的出水端有高0.5 m的排水口。

    本实验共设置预曝气时长分别为0、0.5、1、2和4 h的5个中试联合系统(实验处理组),5个联合系统分别对应5个浮萍塘,所有浮萍塘的浮萍(Lemna japonica)初始覆盖密度设置为550 g·m−2(以鲜质量计)。实验过程中,每4 d定量采集并打捞多余浮萍,确保打捞后塘中剩余浮萍的覆盖密度恒定为550 g·m−2。所有浮萍塘的有效水深为0.5 m,蓄水量为6 m3,进水量为1 m3·d−1,每2 d进水1次,曝气塘的有效水深为1.4 m,蓄水量为12 m3。各处理组曝气塘和浮萍塘的水力停留时间(hydraulic retention time, HRT)见表1。进水(实验用水)来源于当地农村生活污水和农田排水的低浓度混合废水,实验期间,进水的平均TP、TN、氨氮、硝态氮、浊度分别为(1.26±0.50)、(13.16±3.96)、(13.05±3.59)、(0.55±0.27) mg·L−1和(46.54±41.82) NTU。进水步骤如下:分别向曝气塘和0 h曝气时长处理组的浮萍塘泵入12 m3和2 m3实验用水,随即启动曝气塘中的曝气泵,分别在曝气0.5、1、2和4 h时,将曝气塘中处于曝气状态的2 m3实验用水泵入所对应处理组的浮萍塘中;与此同时,浮萍塘出水端的排水口自动同步排水,以维持浮萍塘水深0.5 m相对稳定。进水结束后,排空曝气塘中的剩余水体。本实验中所有处理系统按上述方法持续运行0.5 a (2019年5—11月)。

    表 1  各处理系统的曝气时长及水力停留时间
    Table 1.  Aeration duration and hydraulic retention time in each treatment system h
    联合处理系统曝气塘HRT浮萍塘HRT联合系统HRT
    A-D-00144144
    A-D-0.50.5143.5144
    A-D-11143144
    A-D-22142144
    A-D-44140144
     | Show Table
    DownLoad: CSV

    1)水样。进水过程中,当曝气时长在0.5、1、2和4 h时均测定曝气塘中DO及氧化还原电位(Eh),每次进水结束后测定浮萍塘中部水体表层(水面以下10 cm)及底层(塘底以上10 cm)的DO和Eh,DO及Eh使用双通道多参数水质检测仪Multi 3420 (WTW,德国)进行原位测定;运行期间每4 d采集1次浮萍塘进出水水样,水样采集后保存在500 mL聚乙烯采样瓶中,放入带有冰块的保温箱,当天运回实验室完成水质指标测定。其中TN、TP、氨氮和硝态氮浓度分别采用过硫酸钾氧化紫外分光光度法、钼酸铵分光光度法、纳氏试剂分光光度法和紫外分光光度法测定(国家环境保护总局,2002);浊度采用WGZ-1A浊度仪(上海昕瑞,中国)测定;pH采用pHS-25型酸度计(上海雷磁,中国)测定。

    污染物去除率按式(1)计算。

    stringUtils.convertMath(!{formula.content}) (1)

    式中:η为去除率;C0为进水浓度,mg·L−1C为出水浓度,mg·L−1

    2)浮萍样。为实现浮萍的定量采样和打捞,每次采样都用6个内面积为0.1 m2的取样框均匀对称地放置到每个浮萍塘表面,捞取6个取样框内的鲜浮萍之后,用脱水机脱水2 min后称重,根据质量计算出各塘内当前鲜浮萍的覆盖密度(g·m−2),同时测算出需要捞取的多余浮萍的质量和面积并进行打捞,从而控制覆盖密度保持恒定为550 g·m−2。每次采样后留取约120 g鲜浮萍60 ℃过夜烘干并称质量。

    浮萍含水率及干物质生长速率分别按式(2)和式(3)计算。

    stringUtils.convertMath(!{formula.content}) (2)

    式中:W为含水率;F为浮萍鲜质量,g;D为浮萍干物质质量,g。

    stringUtils.convertMath(!{formula.content}) (3)

    式中:V为干物质生长速率,g·(m2·d)−1W2为本次干物质质量,g;W1为上次打捞后浮萍塘剩余的干物质质量,g;S为水体表面积,m2t为打捞周期,d。

    数据使用SPSS 23.0进行配对样品T检验分析,取95%的置信度水平分析处理组间的显著性差异,并使用Microsoft Excel 2010进行制图。

    1)对曝气塘水体DO、Eh及pH的影响。由图1(a)可知,随着曝气时长增加,曝气塘水体中DO不断升高,且各组间均有显著差异。其中,当曝气时长为0.5、1、2和4 h时,DO分别为4.47、5.41、6.47和7.45 mg·L−1。同时,由图1(b)可知,各曝气时长下的Eh均为负值,并随着曝气时长的增加而升高。其中,曝气时长0.5 h时Eh均值最小,为−187.77 mV;曝气4 h时均值最大,为−111.04 mV。Eh在曝气时长0.5、1和2 h间存在显著差异,而在2 h和4 h间无显著差异。此外,由图1(c)可知,所有曝气时长下水体pH均大于7.8,并随着曝气时长的增加而升高。其中,曝气时长为0.5 h时,水体平均pH最低,为7.8;曝气时长为4 h时,水体平均pH最高,为8.4;且各曝气时长间的pH均有显著差异。以上结果表明,曝气有利于提高进水水体DO、Eh和pH,且曝气时间越长,DO、Eh和pH越高。

    图 1  曝气塘中不同曝气时长下的水体DO、Eh和pH
    Figure 1.  DO, Eh and pH in the aeration ponds at different aeration durations

    2)对曝气塘污染物浓度及去除的影响。由表2的数据可知,曝气塘中曝气时长0.5、1、2和4 h处理组中曝气塘出水TN浓度均无显著差异,但均显著低于未曝气时的浓度。这表明曝气处理能促进TN的去除,但不同曝气时长对TN去除的影响较小,并且TN去除率均较低,约为6%左右(图2)。而对于曝气塘出水硝态氮浓度(表2),其结果与TN浓度类似,曝气时长为0.5、1、2和4 h的处理组显著低于0 h处理组。这表明曝气处理同样能促进硝态氮的去除,并且随曝气时间的增加,硝态氮浓度呈现升高趋势。其中,曝气时长为1、2和4 h的处理组中硝态氮的浓度显著高于曝气时长为0.5 h的处理组。这表明曝气时长增加不利于硝态氮的去除,这可能与长曝气时间下水体DO较高(图1(a)),好氧硝化过程增强,而厌氧反硝化过程受到抑制有关[20]。同时,所有曝气时长(0、0.5、1、2及4 h)之间的TP浓度均无显著差异(表2),而且TP去除率最高仅有2%左右(图2),表明曝气处理对TP的去除无显著促进作用。然而,曝气处理对浊度的降低却极为有效。其中,曝气时长0.5、1、2及4 h的浊度均显著低于0 h,且0.5、1和2 h的浊度显著低于4 h(表2),表明不同曝气时长对浊度的影响不同。从去除率看(图2),曝气时长0.5 h对浊度的去除率最高为56.59%,随着曝气时间增加,去除率有逐渐降低的趋势;在曝气时长4 h时,去除率下降为41.91%。这一结果可能与曝气过程中水体氧化还原性和微生物的生长有关,曝气前的实验用水因长期处于厌氧状态,会产生大量还原性黑色物质(FeS、MnS等),使水体变成浊度较高的黑臭水体[21]。而短暂的曝气(0.5 h)会使得水体中的黑色物质被氧化,浊度迅速降低(表2),随着曝气时间增加,水体中的微生物大量繁殖,使得浊度升高,去除率下降。

    表 2  不同曝气时长处理下曝气塘出水(浮萍塘进水)污染物浓度
    Table 2.  Pollutant concentration in the effluent of the aeration ponds (influent of the duckweed-based ponds) at different aeration durations
    曝气时长/hTN/(mg·L−1)氨氮/(mg·L−1)硝态氮/(mg·L−1)TP/(mg·L−1)浊度/NTU
    01)11.97±2.70a11.26±2.64a0.67±0.42a1.26±0.44a30.96±42.15a
    0.511.39±3.03b10.86±2.63b0.19±0.16c1.23±0.41a13.44±11.65c
    111.25±3.05b10.90±2.46b0.35±0.41b1.22±0.40a14.92±14.90c
    211.51±3.29b11.12±2.64a0.32±0.32b1.21±0.43a17.52±18.31c
    411.20±3.17b10.89±2.79b0.44±0.27b1.24±0.40a17.98±18.44b
      注:1)未进行曝气处理,该水样同时也是曝气塘进水;数据后不同的小写字母代表同列数据间存在显著差异(P<0.05)。
     | Show Table
    DownLoad: CSV
    图 2  曝气塘中不同曝气时长下的污染物去除率
    Figure 2.  Removal efficiencies of pollutants in the aeration ponds at different aeration durations

    1)对浮萍塘水体DO、Eh及pH的影响。由图3(a)可见,DO在进水经不同曝气时长处理的浮萍塘间均存在显著差异,并随曝气时长增加而上升。其中,DO在进水未经曝气处理(曝气时长为0 h)的浮萍塘中均值仅有0.39 mg·L−1,而曝气0.5 h后均值迅速升至2.06 mg·L−1。此后,随曝气时长增加上升趋势变缓,曝气4 h时仅达到3.13 mg·L−1。这表明通过对浮萍塘进水进行曝气处理可通过提高进水(即曝气塘水体)DO(图1(a))增加浮萍塘水体DO。但与进水DO相比,浮萍塘水体DO随曝气时长增加而提升的幅度较小,当曝气时长大于0.5 h后,延长曝气时长对浮萍塘水体的增氧效果有限。此外,由图3(b)可知,Eh在所有处理的浮萍塘中均为负值,其中,在进水未经曝气处理(曝气时长为0 h)的浮萍塘中均值最小(−258.78 mV),显著低于其他处理;而在曝气时长0.5、1和2 h间(−120.00 mV左右)无显著差异,但曝气时长0.5和2 h则显著低于曝气时长4 h(−103.31 mV)。上述结果表明,曝气处理有利于提高浮萍塘水体Eh,且随曝气时长增加,Eh呈现一定的上升趋势,但并不明显。此外,图3(c)表明,浮萍塘水体pH并未随曝气时长的增加呈现出显著的变化趋势,相对而言,经曝气时长4 h处理的水体pH(7.95)显著高于其他处理,而经曝气时长1 h处理的水体pH(7.85)显著低于其他处理。

    图 3  浮萍塘中不同曝气时长下的水体DO、Eh和pH
    Figure 3.  DO, Eh and pH in the duckweed-based ponds at different aeration durations

    2)对浮萍生长的影响。图4表明,与进水未经曝气处理(曝气时长0 h)的浮萍塘相比,进水经曝气处理(曝气时长0.5、1、2和4 h)的浮萍塘中浮萍生长速率更高,表明曝气处理能促进浮萍生长。其中,随着曝气时长的增加,浮萍的生长速率呈先上升后下降的变化趋势;在曝气时长2 h下的平均生长速率最高(8.00 g·(m2·d)−1),显著高于其他曝气时长下的平均生长速率,也高于前期无曝气处理的研究结果[18]。这表明在本实验条件下,浮萍生长最优曝气时长为2 h。此外,由图4可进一步看出,在进水经曝气处理(曝气时长0.5、1、2和4 h)的浮萍塘中,浮萍的含水率显著低于未经曝气处理(曝气时长0 h)的浮萍塘。这表明曝气处理能降低浮萍含水率,提高浮萍的干物质含量,并且随着曝气时长的增加,浮萍的含水率呈现出缓慢下降的变化趋势。以上结果表明,不同曝气时长在影响浮萍生长的同时,也影响浮萍的生理状况。

    图 4  不同曝气时长处理的浮萍塘中浮萍的生长速率及含水率
    Figure 4.  The growth rate and water content of duckweed in the duckweed ponds at different aeration durations

    3)对浮萍塘污染物出水浓度的影响。由表3可知,对于所有污染物的出水浓度,经曝气处理(0.5、1、2和4 h)的浮萍塘均显著低于未经曝气处理(0 h)的浮萍塘。此结果表明,曝气处理有利于所有污染物的去除。然而,在经曝气处理的浮萍塘间出水污染物浓度的差异相对较小,而且不同污染物的差异情况不同。对于TN和浊度,曝气时长1、2和4 h处理组的数值显著低于0 h处理组,最低均值分别出现在曝气时长1 h(4.98 mg·L−1)和4 h(2.83 NTU);对于氨氮,曝气时长4 h的出水浓度显著最低,其平均出水浓度为3.68 mg·L−1;对于硝态氮,随曝气时长的增加,出水浓度呈现升高趋势,在曝气时长0 h时有最小平均出水浓度(0.14 mg·L−1),在曝气时长4 h时有最大平均出水浓度(1.36 mg·L−1),所有经曝气处理的浮萍塘均显著高于未经曝气处理的浮萍塘;对于TP,曝气时长4 h的出水浓度在所有处理组中最低(0.23 mg·L−1)。

    表 3  不同曝气时长处理下浮萍塘出水污染物浓度
    Table 3.  Pollutant concentration in the effluent of duckweed-based ponds at different aeration durations
    曝气时长/hTN/(mg·L−1)氨氮/(mg·L−1)硝态氮/(mg·L−1)TP/(mg·L−1)浊度/NTU
    07.49±3.31a7.33±3.29a0.14±0.13c0.62±0.33a6.69±5.93a
    0.55.57±2.19b4.70±2.33b0.85±0.70b0.34±0.17b4.61±4.46b
    14.98±2.10c4.15±2.11b0.84±0.69b0.35±0.14b3.13±2.63c
    25.07±2.34c4.17±2.20b0.89±0.73b0.29±0.13c2.99±2.56c
    45.03±2.69c3.68±2.14c1.36±1.05a0.23±0.11d2.83±2.26c
      注:数据后不同的小写字母代表同列数据间存在显著差异(P<0.05)。
     | Show Table
    DownLoad: CSV

    利用曝气塘进水(最初实验用水)及浮萍塘出水计算和比较不同曝气时长下曝气塘-浮萍塘联合系统的污染物去除率,以此评估曝气时长对联合系统污染物去除效果的影响并探寻经济有效的最佳曝气时长,结果如图5所示。由图5可知,所有污染物的去除率均随曝气时长的增加而先迅速上升后趋于平缓;在曝气时长为0 h的联合系统中,TN、氨氮、TP和浊度的去除率分别为37.42%、36.18%、51.09%和78.40%;进行0.5 h曝气处理后,上述污染物的去除率迅速上升,分别达到53.51%、58.93%、73.05%和85.11%;1 h曝气处理后,除TP外,其他污染去除率也有显著上升,但幅度变小,TN、氨氮和浊度的去除率分别上升至58.42%、61.89%和89.90%;此后,随曝气时长进一步增加(2 h和4 h),除TP去除率有一定升高,并在曝气时长4 h时达到最大值(81.44%)外,其他污染物(包括TN、氨氮和浊度)的去除率均未明显提升,与曝气时长1 h相比无显著差异,这表明曝气时长对这些污染物去除的促进作用在曝气1 h左右就已基本完成。可见,尽管增加曝气时长能显著提高进水和浮萍塘水体DO(分别如图1(a)图3(a))和Eh(分别如图1(b)图3(b)),但并不能持续促进大多数污染物的去除,也不能持续促进浮萍的生长(如图4)。同时,尽管浮萍在曝气时长2 h时出现最大值8.00 g·(m2·d)−1,但与曝气时长1 h的7.36 g·(m2·d)−1相比并不突出,然而曝气成本却增加2倍,因此,综合考虑污染物去除、浮萍生长及曝气成本,建议最优曝气时长为0.5~1 h。此时,与未曝气处理组相比,浮萍塘的DO提高了1.68~2.02 mg·L−1;TN、氨氮、TP和浊度的去除率分别提高了16.09%~21.00%、22.75%~25.71%、21.67%~21.96%和6.71%~11.50%。

    图 5  曝气塘-浮萍塘联合系统污染物去除率与曝气时长的关系
    Figure 5.  Relationship between pollutant removal efficiency and aeration durations in the combined system of aeration pond and duckweed-based pond

    本研究中发现,曝气处理在提高进水水体DO的同时(图1(a)),也能增加水体的pH(图1(c)),且DO和pH之间呈显著正相关关系(P<0.05),这一结果与已有文献报道[22-23]的结果一致。这可能与水体中有机物的分解有关:在DO较低时,有机物的分解以厌氧发酵产有机酸为主,使水体pH较低;随DO的提高,有机物的分解转变为以好氧分解产CO2为主[24],因CO2酸性较有机酸弱,导致pH逐渐升高。然而,相对DO来说,pH升高幅度较小,仅从曝气时长0 h的7.86升高至曝气时长4 h的8.43(图1(c)),因此,pH对污染物的去除影响有限。

    在浮萍生产方面,曝气处理可显著提高浮萍的生长速率(图4),推测可能与曝气处理增加水体CO2[25]和O2(即DO)含量有关(图3(a))。CO2作为重要的光合作用底物,可促进浮萍光合作用和生长,而O2含量的增加有利于改善浮萍根系植物促生菌的生长状况,进而促进浮萍生长。有研究结果[26]表明,浮萍根系普遍含有大量对其生长有重要作用的植物促生菌,这些促生菌大多属于好氧微生物,因而易受O2含量影响。更多浮萍生物质的收获具有重要意义:一方面,浮萍生物质富含淀粉、蛋白及黄酮等高附加值成分[2, 5],可通过微生物发酵或热化学液化过程转化为生物燃料[6, 27-28];另一方面,也可作为蛋白食物/饲料原料[10, 29]和农业肥料[30],甚至通过提取药用成分,用于治疗心脑血管疾病等[31],实现污水处理、碳氮磷资源回收及生物质利用的产业链循环。浮萍可资源化利用的这一突出特点是其相较其他水生植物的最大优势。此外,浮萍在生物质收获方面也比其他大型水生植物更容易。大型水生植物(水葫芦)由于个体大、根系长并深扎土壤、个体之间相互缠绕等,采收之前需要进行切割等前处理,而浮萍较小的个体及漂浮于水体表面的特点无需进行切割等前处理操作,可直接通过刮赶、真空吸取和过滤等方式打捞[32-33],更易实现机械化、自动化操作和规模化生产。

    在污染物去除方面,联合系统的氮磷去除主要以浮萍塘为主(图5)。有研究结果[12, 34]表明,浮萍塘中氮的去除途径主要包括浮萍吸收、微生物硝化反硝化作用、氨挥发以及沉降。其中,在pH中性及低氨氮浓度的水体中,挥发和沉降作用对氮的去除贡献极小,浮萍吸收和微生物的硝化反硝化被认为是浮萍塘中氮去除的主要途径[18, 35]。本研究中的pH在8左右(图3(c)),进水氨氮质量浓度在11 mg·L−1左右。因此,可认为氮的去除主要通过浮萍生长吸收和硝化反硝化作用2种途径实现,而曝气处理不仅可以促进浮萍的生长吸收(图4),还会通过改善水体DO(图3(a))促进硝化反硝化细菌的生长和活性,进而促进氮素的去除。曝气时长对氮素去除的促进作用主要体现在初始的1 h以内。其中,0.5 h内通过同时促进浮萍生长及硝化反硝化作用实现,而0.5 h后则仅通过促进硝化反硝化作用而实现,曝气时长高于1 h后对氮素污染物去除的影响较小(图5)。与去除氮素不同,浮萍塘去除磷的途径相对单一,主要包括浮萍吸收和微生物吸收沉降2个途径[12]。有研究表明,浮萍对磷的去除效果优于其他大部分水生植物[7]。对于未经曝气处理的浮萍塘,浮萍吸收是磷去除的主要途径[2],然而,经曝气处理的浮萍塘,情况可能有所不同。有研究结果[36-37]表明,聚磷微生物对磷的吸收和聚合作用是一个好氧过程,DO越高,聚磷微生物除磷效果越好。因此,曝气处理可通过增加水体DO,促进聚磷微生物对磷的吸收和去除。本研究中,曝气时长对磷的去除促进作用主要体现在前0.5 h以内,主要通过促进浮萍生长得以实现(图4);而曝气时长为1 h时反而不利于磷的去除;在曝气时长高于1 h后,曝气可通过强化聚磷以促进磷的去除,但效果有限(图5)。

    1)曝气处理能显著提高曝气塘及浮萍塘水体中的DO和Eh,且DO和Eh随曝气时长的增加而上升。

    2)曝气处理也能显著促进浮萍生长及污染物去除,但促进效果并未简单地随曝气时长的增加而提高。

    3)综合考虑污染物去除、浮萍生长及曝气成本,建议曝气时长不宜高于1 h。推荐的曝气时长以0.5~1 h为佳,此时浮萍塘DO提高了1.68~2.02 mg·L−1,TN、氨氮、TP和浊度的去除率分别提高了16.09%~21.00%、22.75%~25.71%、21.67%~21.96%和6.71%~11.50%。

  • [1] 曹秀芹,赵振东,杨平,等. 污泥厌氧消化反应器搅拌性能的CFD模拟[J]. 给水排水,2016,42(3):137-141
    [2] XU W.Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation[J].International Journal of Hydrogen Energy,2010,35(20):10960-10966 10.1016/j.ijhydene.2010.07.060
    [3] WU B X.Advances in the use of CFD to characterize design and optimize bioenergy systems[J].Computers and Electronics in Agriculture,2013,92(3):195-208 10.1016/j.compag.2012.05.008
    [4] WU B X.CFD simulation of mixing in egg-shaped anaerobic digesters[J].Water Research,2010,44(5):1507-1519 10.1016/j.watres.2009.10.040
    [5] METZNER A B, REED J C.Flow of non-Newtonian fluids correlation of laminar transition and turbulent-flow regions[J].AIChE Journal,1955,1(4):434-440 10.1002/aic.690010409
    [6] TERASHIMA M, GOEL R, KOMATSU K, et al.CFD simulation of mixing in anaerobic digesters[J].Bioresource Technology,2009,100(7):2228-2233 10.1016/j.biortech.2008.07.069
    [7] YU L, MA J, CHEN S.Numerical simulation of mechanical mixing in high solid anaerobic digester[J].Bioresource Technology,2011,102(2):1012–1018 10.1016/j.biortech.2010.09.079
    [8] WU B.CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters[J].Water Research,2011,45(5):2082-2094 10.1016/j.watres.2010.12.020
    [9] TOM B, BECHTEL P E.Laminar pipeline flow of wastewater sludge: Computational fluid dynamics approach[J].Journal of Hydraulic Engineering,2003,129(2):153-158 10.1061/(ASCE)0733-9429(2003)129:2(153)
    [10] LóPEZ-JIMéNEZA P A, ESCUDERO-GONZáLEZA J, MARTíNEZC T M, et al.Application of CFD methods to an anaerobic digester: The case of Ontinyent WWTP, Valencia, Spain[J].Journal of Water Process Engineering,2015,7:131-140 10.1016/j.jwpe2015.05.006
    [11] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京: 清华大学出版社,2004:136-137
    [12] COUGHTRIE A R, BORMAN D J, SLEIGH P A.Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester[J].Bioresource Technology,2013,1138(2):297-306 10.1016/j.biortech.2013.03.162
    [13] WU B X.CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters[J].Water Research,2010,44(13):3861-3874 10.1016/j.watres.2010.04.043
    [14] WU B X.Computational fluid dynamics investigation of turbulence models for non-Newtonian fluid flow in anaerobic digesters[J].Environmental Science and Technology,2010,44(23):8989-8995 10.1021/es1010016
    [15] WU B X.Large eddy simulation of mechanical mixing in anaerobic digesters[J].Biotechnology & Bioengineering,2012,109:804-812 10.1002/bit.24345
    [16] YU L, MA J W, FREAR C, et al.Multiphase modeling of settling and suspension in anaerobic digester[J].Applied Energy,2013,111:28-39 10.1016/j.apenergy.2013.04.073
    [17] KARIM K, THOMA G J, ALDAHHAN M H.Gas-lift digester configuration effects on mixing effectiveness[J].Water Research,2007,41:3051-3060 10.1016/j.watres.2007.03.042
    [18] KARIM K, VARMA R, VESVIKAR M.et al.Flow pattern visualization of a simulated digester[J].Water Research,2004,38:3659-3670 10.1016/j.watres.2004.06.009
    [19] KARIM K, THOMA G J, ALDAHHAN M H.Gas-lift digester configuration effects on mixing effectiveness[J].Water Research,2007,41:3051-3060 10.1016/j.watres.2007.03.042
    [20] ZHANG Y, YU G R, YU L, et al.Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion[J].Bioresource Technology,2016,203:166-172 10.1016/j.biortech.2015.12.023
    [21] 宋金礼,陈贵军,王娟. 发酵罐内固液两相流的数值模拟[J]. 节能,2015,34(5):22-25
    [22] VESVIKAR M S, ALDAHHAN M H.Effect of scale on hydrodynamics of internal gas-lift loop reactor-type anaerobic digester using CFD[J].Chemical Product and Process Modeling,2015,10(3):179-192 10.1515/cppm-2015-0009
    [23] WU B X.CFD simulation of gas mixing in anaerobic digesters[J].Computers & Electronics in Agriculture,2014,109:278-286 10.1016/j.compag.2014.10.007
    [24] SOUSA LIMA M G, DE LIMA A G B, BRITO NUNES F C.Theoretical/experimental study of an upflow anaerobic sludge blanket reactor treating domestic wastewater[J].International Journal of Chemical Reactor Engineering,2011,9(1):1542-6580 10.1515/1542-6580.2599
    [25] WANG X, DING J, GUO W Q, et al.A hydrodynamics–reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation[J].Bioresource Technology,2010,101(24):9749-9757 10.1016/j.biortech.2010.07.115
    [26] MURTHY B N, GHADGE R S, JOSHI J B.CFD simulations of gas–liquid–solid stirred reactor: Prediction of critical impeller speed for solid suspension[J].Chemical Engineering Science,2007,62(24):7184?7195 10.1016/j.ces.2007.07.005
    [27] VESVIKAR M S, ALDAHHAN M H.Flow pattern visualization in a mimic anaerobic digester using CFD [J].Biotechnology and Bioengineering,2005,89:719-732 10.1002/bit.20388
    [28] MERONEY R N, COLORADO P E.CFD simulation of mechanical draft tube mixing in anaerobic digester tanks[J].Water Research,2009,43(4):1040-1050 10.1016/j.watres.2008.11.035
    [29] WU B X.CFD analysis of mechanical mixing in anaerobic digesters[J].Transactions of the ASABE,2009,52(4):1371-1382 10.13031/2013.27786
    [30] WU B X.CFD prediction of mixing time in anaerobic digesters[J].Transactions of the ASABE,2010,53(2):553-563 10.13031/2013.29570
    [31] MENDOZAL A M, MARTINEZ T M, MONTANANA V F, et al.Modeling flow inside an anaerobic digester by CFD techniques[J].International Journal of Energy and Environmental,2011,2(6):963-974
    [32] WU B X, CHEN Z B.An integrated physical and biological model for anaerobic lagoons[J].Bioresource Technology,2011,102:5032-5038 10.1016/j.biortech.2011.01.076
    [33] BRIDGEMAN J.Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester[J].Advances in Engineering Software,2012,44(1):54-62 10.1016/j.advengsoft.2011.05.037
    [34] SINDALL R, BRIDGEMAN J, CARLIELL M C.Velocity gradient as a tool to characterise the link between mixing and biogas production in anaerobic waste digesters[J].Water Science & Technology,2013,67(12):2800-2806 10.2166/wst.2013.206
    [35] 曹秀芹,赵振东,杨平,等.基于污泥流变特性对厌氧消化反应器的模拟研究[J].给水排水,2016,52(7):36-41
    [36] WANG F P, ZHANG C S, HUO S H.Influence of fluid dynamics on anaerobic digestion of food waste for biogas production[J].Environmental Technology,2017,38(9):1160-1168 10.1080/09593330.2016.1220429
    [37] WU B X.CFD study of submersible mixers in anaerobic digesters[J].Transactions of the ASABE,2017,60(2):275-282 10.13031/trans.12096
    [38] 曹秀芹,丁浩,蒋竹荷,等. 液-液射流搅拌提高热水解污泥混合性能分析[J].环境工程学报,2018,12(1):316-323 10.12030/j.cjee.201706194
    [39] 王乐,樊敏,詹翔宇,等. 气体搅拌下厌氧消化反应器CFD数值模拟及模型研究[J].农业机械学报,2018,49(2):305-312
    [40] MEISTER M, REZAVAND M, EBNER C, et al.Mixing non-Newtonian flows in anaerobic digesters by impellers and pumped recirculation[J].Advances in Engineering Software,2018,115:194-203 10.1016/j.advengsoft.2017.09.015
    [41] CRAIG K J, NIEUWOUDT M N, NIEMAND L J.CFD simulation of anaerobic digester with variable sewage sludge rheology[J].Water Research,2013,47(13):4485-4497 10.1016/j.watres.2013.05.011
    [42] SAJJADI B, RAMAN A A A, PARTHASARATHY R.Fluid dynamic analysis of non-Newtonian flow behavior of municipal sludge simulant in anaerobic digesters using submerged recirculating jets[J].Chemical Engineering Journal,2016,298:259-270 10.1016/j.cej.2016.03.069
    [43] METZNER A B, OTTO R E.Agitation of non-Newtonian fluids[J].American Institute of Chemical Engineers,1957,3(1):3-10 10.1002/aic.690030103
    [44] LIU J B, YANG M, ZHANG J Y, et al.A comprehensive insight into the effects of microwave-H2O2, pretreatment on concentrated sewage sludge anaerobic digestion based on semi-continuous operation[J].Bioresource Technology,2018,256:118-127 10.1016/j.biortech.2018.01.126
    [45] KAZEMZADEH A, EIN-MOZAFFARI F, LOHI A, et al.Effect of the rheological properties on the mixing of Herschel-Bulkley fluids with coaxial mixers: Applications of tomography, CFD, and response surface methodology[J].Canadian Journal of Chemical Engineering,2016,94(12):2394-2406 10.1002/cjce.22601
    [46] WICKLEIN E, BATSTONE D J, DUCOSTE J, et al.Good modelling practice in applying computational fluid dynamics for WWTP modelling[J].Water Science and Technology,2016,73(5):969-982 10.2166/wst.2015.565
    [47] 曹秀芹,尹伟齐,赵振东. 不同含水率下污泥流变模型的显著性水平分析[J]. 北京工业大学学报,2017,43(1):150-157
    [48] ZHANG J S, HAWARD S J, WU Z G, et al.Evolution of rheological characteristics of high-solid municipal sludge during anaerobic digestion[J].Applied Rheology,2016,26(3):1-10 10.3933/ApplRheol-26-32973
    [49] ZHANG J S, XUE Y G, ESHTIAGHI N, et al.Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement[J].Water Research,2017,116:34-43 10.1016/j.watres.2017.03.020
    [50] SAFFARIAN M R, HAMEDI M H, SHAMS M.Numerical simulation of a secondary clarifier in a sewage treatment plant using modified Bingham model[J].Canadian Journal of Civil Engineering,2011,38(1):11-22 10.1139/L10-106
    [51] 董登志,张静思,吴志根,等. 高含固污泥临界剪切应力影响因素的研究[J]. 西安交通大学学报,2017,51(11):57-62 10.7652/xjtuxb201711009
    [52] MICALE G, GRISAFI F, RIZZUTI I, et al.CFD simulation of particle suspension height in stirred vessels[J].Chemical Engineering Research and Design,2004,82(9):1204-1213 10.1205/cerd.82.9.1204.44171
    [53] WANG Z, MAO Z S, SHEN X Q.Numerical simulation of macroscopic mixing in a rushton impeller stirred tank[J].Chinese Journal of Process Engineering,2006,6(6):857-863 10.3321/j.issn:1009-606X.2006.06.001
    [54] BELLO M R, SHARRATT P N.Modelling the effects of imperfect mixing on the performance of anaerobic reactors for sewage sludge treatment[J].Journal of Chemical Technology and Biotechnology,1998,71:121-130 10.1002/(SICI)1097-4660(199802)71:2<121::AID-JCTB836>3.0.CO;2-7
    [55] 王令闪,苏红军,徐世艾. 高黏体系中最大叶片式搅拌桨直径的CFD优化[J].化学工程,2011,39(7):9-12
    [56] 尹伟齐,曹秀芹,张达飞. 猪粪流变特性及基于黏度曲线的反应器死区研究[J].中国沼气,2017,35(3):27-32
    [57] CAMP T R, STEIN P C.Velocity gradients and internal work in fluid motion[J].Journal of the Boston Society Civil Engineers, 1943,30:219-237
    [58] GRABER S D.A critical review of the use of the G-value (RMS velocity gradient) in environmental engineering[J].Development in Theoret & Applied Mechanics,1994,17:533-556
    [59] 曹秀芹,杨平,赵振东. 污泥流变学及其厌氧消化混合特性数值模拟研究进展[J].环境工程学报,2015,9(3):997-1003
    [60] 芦汉超. 机械搅拌厌氧消化池流态研究[D].北京:清华大学,2015
    [61] WANG F P, ZHANG C S, HUO S H.Influence of fluid dynamics on anaerobic digestion of food waste for biogas production Influence of fluid dynamics on anaerobic digestion of food waste for biogas production[J].Environmental Technology,2016,38(9):1160–1168 10.1080/09593330.2016.1220429
    [62] 曹秀芹,杜金海,李彩斌,等. 污泥厌氧消化搅拌条件的优化分析[J].环境科学与技术,2015,38(1):100-105
    [63] KARIM K, KLASSON K T, HOFFMANN R, et al.Anaerobic digestion of animal waste: Effect of mixing [J].Bioresource Technology,2005,96:1607-1612 10.1016/j.biortech.2004.12.021
    [64] APPELS L, BAEYENS J, DEGREVE J, et al.Principles and potential of the anaerobic digestion of waste-activated sludg[J].Progress in Energy and Combustion Science,2008,34:755-781 10.1016/j.pecs.2008.06.002
    [65] KINYUA M N, ZHANG J, CAMACHO C F, et al.Use of physical and biological process models to understand the performance of tubular anaerobic digesters[J].Biochemical Engineering Journal,2016,107:35?44 10.1016/j.bej.2015.11.017
    [66] LEBRANCHU A, DELAUNAY S, MARCHAL P, et al.Impact of shear stress and impeller design on the production of biogas in anaerobic digesters[J].Bioresource Technology,2017,245:1139-1147 10.1016/j.biortech.2017.07.113
    [67] KESHTKAR A, MEYSSAMI B, ABOLHAMD G, et al.Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure[J].Bioresource Technology,2003,87:113-124 10.1016/S0960-8524(02)00104-9
    [68] WU B X, BIBEAU E L, GEBREMEDHIN K G.Three-dimensional numerical simulation model of biogas production for anaerobic digesters[J].Canadian Biosystems Engineering,2009,51:81-87 10.13031/2013.20924
    [69] FLEMING J G.Novel simulation of anaerobic digestion using computational fluid dynamics[D].Raleigh, NC: North Carolina State University,2002
    [70] 杨艳清.EGSB反应器处理低浓度挥发酸废水CFD-生化反应耦合模型及模拟研究[D].重庆:重庆大学,2015
  • 加载中
计量
  • 文章访问数:  8724
  • HTML全文浏览数:  8557
  • PDF下载数:  330
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-11-12
曹秀芹, 徐国庆, 袁海光, 江坤, 仇付国, 尹伟齐, 付昆明. 污泥厌氧消化反应器CFD数值模拟研究进展[J]. 环境工程学报, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001
引用本文: 曹秀芹, 徐国庆, 袁海光, 江坤, 仇付国, 尹伟齐, 付昆明. 污泥厌氧消化反应器CFD数值模拟研究进展[J]. 环境工程学报, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001
CAO Xiuqin, XU Guoqing, YUAN Haiguang, JIANG Kun, QIU Fuguo, YIN Weiqi, FU Kunming. A critical review on CFD simulation of anaerobic digestion reactor for sewage sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001
Citation: CAO Xiuqin, XU Guoqing, YUAN Haiguang, JIANG Kun, QIU Fuguo, YIN Weiqi, FU Kunming. A critical review on CFD simulation of anaerobic digestion reactor for sewage sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3005-3019. doi: 10.12030/j.cjee.201803001

污泥厌氧消化反应器CFD数值模拟研究进展

  • 1. 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室,北京100044
  • 2. 北京建筑大学水环境国家级实验教学示范中心,北京100044
  • 3. 河南省交通规划设计研究院股份有限公司,郑州450000
基金项目:

北京市教委(北京市自然科学基金)科技重点项目(KZ201310016017)

北京建筑大学市属高校基本科研业务费专项资金资助 (X18182)

摘要: 污泥作为典型的不透明非牛顿流体,在厌氧消化反应器内的流场具有复杂性,难以直接进行流场测试分析。结合计算流体力学(CFD)技术,分析污泥厌氧消化反应器内的流场分布情况,探讨污泥在反应器内混合效果和对消化过程的影响,以验证校核反应器优化设计和运行,改善污泥在消化反应器内的流动和混合性能并最终提高反应器性能。在综合文献及前期研究工作的基础上,系统分析并重点关注了CFD数值模拟过程当中多相流模型和湍流模型的选取、污泥流变特性应用、反应器流场评估优化及耦合生化模型等的研究现状及进展,最后总结了目前污泥厌氧消化反应器CFD数值模拟过程存在的问题。并指出在考量污泥流变学特性的基础上,利用传质模型将反应器流场和生化过程相耦合,构建流场-生化耦合模型,获取基质转化规律,为优化污泥厌氧消化反应器设计运行提供理论依据,是CFD应用于厌氧消化反应器数值模拟的发展方向。

English Abstract

参考文献 (70)

返回顶部

目录

/

返回文章
返回