硫酸盐生物还原过程中涉硫组分代谢特性

姚琪, 黄建洪, 杨磊, 吴熙, 胡学伟. 硫酸盐生物还原过程中涉硫组分代谢特性[J]. 环境工程学报, 2018, 12(10): 2783-2790. doi: 10.12030/j.cjee.201802082
引用本文: 姚琪, 黄建洪, 杨磊, 吴熙, 胡学伟. 硫酸盐生物还原过程中涉硫组分代谢特性[J]. 环境工程学报, 2018, 12(10): 2783-2790. doi: 10.12030/j.cjee.201802082
YAO Qi, HUANG Jianhong, YANG Lei, WU Xi, HU Xuewei. Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2783-2790. doi: 10.12030/j.cjee.201802082
Citation: YAO Qi, HUANG Jianhong, YANG Lei, WU Xi, HU Xuewei. Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2783-2790. doi: 10.12030/j.cjee.201802082

硫酸盐生物还原过程中涉硫组分代谢特性

  • 基金项目:

    国家自然科学基金资助项目(51368024,51668026)

Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process

  • Fund Project:
  • 摘要: 通过硫酸盐生化代谢过程中涉硫组分(SO42-、SO32-、H2S、S2-、S2O32-、微生物含硫)等代谢特性模式研究,揭示了代谢过程中的主要限速步骤及过程代谢产物演替规律。SRB还原过程中限速步骤主要为亚硫酸根转化为硫化氢的过程,利用氮气吹脱硫化氢后,反应终点时各涉硫组分占总硫的51.38%,硫离子的量增加了2.09倍,硫酸根的去除率从83.5%提高到91.24%,亚硫酸根浓度呈现出降低的趋势;pH明显上升,并最终达到8.31,而无吹脱硫化氢的反应器最终pH为6.87。反应器中脱硫弧菌为优势菌,硫化氢被吹脱后,微生物在目、科、属水平上优势菌得到提高,硫化氢的存在抑制了优势菌的增殖。
  • 加载中
  • [1] MUYZER G, STAMS A J.The ecology and biotechnology of sulphate-reducing bacteria[J].Nature Reviews Microbiology,2008,6(6):441-454 10.1038/nrmicro1892
    [2] SANCHEZ-ANDREA I, SANZ J L, BIJMANS M F, et al.Sulfate reduction at low pH to remediate acid mine drainage[J].Journal of Hazardous Materials,2014,269:98-109 10.1016/j.jhazmat.2013.12.032
    [3] 王爱杰, 王丽燕, 任南琪, 等. 硫酸盐废水生物处理工艺研究进展[J]. 哈尔滨工业大学学报,2004,36(11):1446-1449
    [4] NECULITA C M, ZAGURY G J, BUSSIERE B.Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs[J].Journal of Environmental Quality,2007,36(1):1-16 10.2134/jeq2006.0066
    [5] YUE Z B, LI Q, LI C C, et al.Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria[J].Bioresource Technology,2015,194:399-402 10.1016/j.biortech.2015.07.042
    [6] LE P P, BATTAGLIA-BRUNET F, PARMENTIER M, et al.Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium[J].Journal of Hazardous Materials,2016,321:764-772 10.1016/j.jhazmat.2016.09.060
    [7] HAO T W, XIANG P Y, MACKEY H R, et al.A review of biological sulfate conversions in wastewater treatment[J].Water Research,2014,65:1-21 10.1016/j.watres.2014.06.043
    [8] 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展,2008,23(5):501-508
    [9] SOROKIN Y I.Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria[J].Nature,1966,210(5035):551-552 10.1038/210551a0
    [10] 肖利萍, 汪兵兵, 魏芳, 等. 新型碳源驯化的SRB 去除酸性矿山废水中SO42- 最佳反应条件[J]. 环境工程学报,2014,8(5):1705-1710
    [11] LEE D J, LIU X, WENG H L.Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm[J].Bioresource Technology,2014,156(4):14-19 10.1016/j.biortech.2013.12.129
    [12] MEYER D D, DE ANDRADE P A, DURRER A, et al.Bacterial communities involved in sulfur transformations in wastewater treatment plants[J].Applied Microbiology & Biotechnology,2016,100(23):10125-10135 10.1007/s00253-016-7839-3
    [13] LEFVRE C T, MENGUY N, ABREU F, et al.A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria[J].Science,2011,334(6063):1720-1723 10.1126/science.1212596
    [14] COLIN Y, GONI-URRIZA M, CAUMETTE P, et al.Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments[J].FEMS Microbiology Ecology,2013,83(1):26-37 10.1111/j.1574-6941.2012.01452.x
    [15] ORSI W D, J RGENSEN B B, BIDDLE J F.Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor[J].Environmental Microbiology Reports,2016,8(4):452-460 10.1111/1758-2229.12387
    [16] XIANG Y, LIU G, ZHANG R, et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241:821-829 10.1016/j.biortech.2017.06.017
    [17] BAI H, KANG Y, QUAN H, et al.Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs[J].Bioresource Technology,2013,128(1):818-822 10.1016/j.biortech.2012.10.070
    [18] XU D, LI Y, GU T.Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J].Bioelectrochemistry,2016,110:52-58 10.1016/j.bioelechem.2016.03.003
    [19] VASQUEZ Y, ESCOBAR M C, NECULITA C M, et al.Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity[J].Chemosphere,2016,153:244-253 10.1016/j.chemosphere.2016.03.052
    [20] 苏冰琴, 李亚新.EGSB 反应器中硫酸盐还原与重金属去除[J]. 中国矿业大学学报,2008,37(2):246-249
    [21] MARTINS M, SANTOS E S, PIRES C, et al.Production of irrigation water from bioremediation of acid mine drainage: Comparing the performance of two representative systems[J].Journal of Cleaner Production,2010,18(3):248-253 10.1016/j.jclepro.2009.10.013
    [22] 苏宇, 王进, 彭书传, 等. 以稻草和污泥为碳源硫酸盐还原菌处理酸性矿山排水[J]. 环境科学,2010,31(8):1858-1863
    [23] HU X, HU Y, CHEN K, et al.Treatment of simulation of copper-containing pit wastewater with sulfate-reducing bacteria (SRB) in biofilm reactors[J].Environmental Earth Sciences,2016,75(19):1305 10.1007/s12665-016-6108-1
    [24] MADIGAN M T, MARTINKO J M, STAHL D A, et al.Brock Biology of Microorganisms[M].Englwood: Prentice Hall,2000
    [25] 任南琪, 王爱杰, 赵阳国. 废水厌氧处理硫酸盐还原菌生态学[M]. 北京: 科学出版社,2009
    [26] 刘广民, 任南琪, 杜大仲, 等. 基于底物利用水平的产酸脱硫系统生态特征[J]. 哈尔滨工业大学学报,2004,36(1):20-23
    [27] 马前, 张小龙. 国内外重金属废水处理新技术的研究进展[J]. 环境工程学报,2007,1(7):10-14
    [28] 王辉, 戴友芝, 刘川, 等. 混合硫酸盐还原菌代谢过程的影响因素[J]. 环境工程学报,2012,6(6):1795-1800
    [29] 朱永艳, 郑传波, 李言涛, 等. 海泥中硫酸盐还原菌数量变化对主要腐蚀环境因子的影响[J]. 海洋科学,2006,30(11):37-40
    [30] 房琳. 砂岩型铀矿不同矿带中可培养硫酸盐还原菌类群及其分布[D]. 西安: 西北大学,2012
    [31] 李甜甜. 污水、海洋环境厌氧微生物的分离与YJ1 菌株的初步研究[D]. 杭州: 浙江大学,2013
    [32] 赵燕, 薛林贵, 李琳, 等. 丛毛单胞菌在环境污染物降解方面的研究进展[J]. 微生物学通报,2012,39(10):1471-1478
    [33] 李浪, 李潮舟, 屈建航, 等. 一株高效脱硫菌的筛选及性能研究[J]. 环境科学与技术,2012,35(s2):70-73
  • 加载中
计量
  • 文章访问数:  4084
  • HTML全文浏览数:  3950
  • PDF下载数:  149
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

硫酸盐生物还原过程中涉硫组分代谢特性

  • 1. 昆明理工大学环境科学与工程学院,昆明650500
基金项目:

国家自然科学基金资助项目(51368024,51668026)

摘要: 通过硫酸盐生化代谢过程中涉硫组分(SO42-、SO32-、H2S、S2-、S2O32-、微生物含硫)等代谢特性模式研究,揭示了代谢过程中的主要限速步骤及过程代谢产物演替规律。SRB还原过程中限速步骤主要为亚硫酸根转化为硫化氢的过程,利用氮气吹脱硫化氢后,反应终点时各涉硫组分占总硫的51.38%,硫离子的量增加了2.09倍,硫酸根的去除率从83.5%提高到91.24%,亚硫酸根浓度呈现出降低的趋势;pH明显上升,并最终达到8.31,而无吹脱硫化氢的反应器最终pH为6.87。反应器中脱硫弧菌为优势菌,硫化氢被吹脱后,微生物在目、科、属水平上优势菌得到提高,硫化氢的存在抑制了优势菌的增殖。

English Abstract

参考文献 (33)

目录

/

返回文章
返回