岩屑甩干机刮刀结构优化及冲蚀磨损分析
Structure optimization and erosion wear analysis of scraper from cuttings dryer
-
摘要: 岩屑甩干机是钻井液不落地处理技术中的核心设备,目前市面上的甩干机多采用直刮刀,但是废弃岩屑对其冲蚀磨损相当严重,导致甩干机分离效率降低,甚至减少了甩干机的寿命。针对上述问题,在原有的岩屑甩干机模型基础上,提出了一种弯刮刀甩干机模型,其次利用计算流体力学数值模拟软件Fluent,采用 DPM模型,通过改变颗粒直径、颗粒质量流量、入口流速,对岩屑甩干机内部流场分布及2种刮刀转子表面冲蚀情况进行数值模拟。结果表明,弯刮刀能有效减少刮刀冲蚀磨损严重的现象,从而提高分离效率。不论是直刮刀还是弯刮刀,刮刀磨损率均先随着颗粒粒径增大而增大,然后随着颗粒粒径增大而减小,到一定程度后不再变化;随着颗粒质量流量增大而增大;随着入口流速增加先平稳变化,到一定程度后大幅增大。最后,对2种刮刀转子的疲劳寿命进行了对比分析,发现弯刮刀能有效提高甩干机的疲劳寿命,为工程实际中岩屑甩干机的优化设计提供了参考。Abstract: Cuttings drier is the core equipment of the drilling fluid non-ground handling technology. At present, straight scraper is mostly used by the dryer on the market, which is prone to be severely worn by the waste debris, resulting in a reduction of the separating efficiency of the dryer and even a decrease of the life of the dryer. In this context, a bending scraper dryer model is presented, and the internal flow field distribution of the cuttings dryer numerical simulation as well as the surface erosion situation of both types of rotor blade are simulated by changing the particle diameter, particle mass flow and entrance velocity, with the help of DPM model in fluent.The results show that the bending scraper can effectively reduce the phenomenon of serious erosion on scraper, thereby enhancing the separation efficiency. Whether it is a straight scraper or a bending scraper, the scraper wear rate increases with the increase of the particle size at first, and then decreases with the increase of the particle size, to a certain extent no longer change.The wear rate also increase with increasing particles mass flow.When the inlet flow rate increases, the wear rate increases smoothly at first and substantially when reach certain extent. Finally, the fatigue life of the two scraper rotors are compared and analyzed. It is found that the bending scraper can effectively increase the fatigue life of the dryer, which provides a reference for the optimization design of the cuttings dryer.
-
Key words:
- cuttings dryer /
- bending scraper /
- erosion /
- fatigue life /
- finite element simulation
-
[1] 付亚荣.“泥浆不落地”绿色钻井新技术落地苏里格[J].石油石化节能,2015,5(10):9 [2] 何松. 海上钻井液废弃物处理[C]//中国石油和石化工程研究会. 中国石油和石化工程研究会环保钻井液技术及废弃钻井液处理技术研讨会论文集,2014 [3] 蒋学彬,荆晨,黄敏,等.油气田钻屑与废泥浆固化处理技术的初步研究[J].新疆环境保护,2009,31(1):22-24 [4] 冯利杰,张福,马永新,等.岩屑处理装置在DSJ300-1海洋钻井平台上的应用[J].石油机械,2013,41(3):77-79 [5] BILLEAUD M, MORRIS R.Drill cuttings dryer reduce waste, increases fluid recovery[J].Offshore, 2007,67(4):80-82 [6] 董怀荣,李宗清,李琴,等.钻井液固控系统技术现状与发展趋势[J].西部探矿工程,2015,27(11):49-52 [7] 胡小刚,康涛,柴占文,等.国外钻井岩屑处理技术与国内应用研制分析[J].石油机械,2009,37(9):159-161 [8] BRADFORD D W,GROWCOCK F B,MALACHOSKY E,et al.Evaluation of centrifugal drying for recovery of synthetic-based drilling fluids[C]// Engineers.SPE Annual Technical Conference and Exhibition, Houston, Texas,1999 10.2118/56566-MS [9] GIZUNTERMAN V V.Improved dewatering of fine concentrates[J].Coke and Chemistry,1976,9:13-15 [10] 朱继发,范德顺.密闭式钻屑脱液离心机在钻井液处理中的应用[J].石油机械,2005(9):83-85 [11] 侯勇俊,郭帅,方潘,等.岩屑甩干机之模型优化及颗粒运移情况分析[J].环境工程学报,2017,11(10):5683-5690 10.12030/j.cjee.201611213 [12] 成奇云. 岩屑甩干机高浓度流场分析及筛篮结构参数优化[D].成都:西南石油大学,2017 [13] 张国栋,张兴.浅谈离心压缩机的常见故障与改进问题[[J].化工管理,2014(14):178-178 [14] HAO Y H, LI Y.Erosion behaviors of the coating on steel structure eroded at low erosion-angle in sandstorm[J].Tribology, 2013,33(4):343-348 [15] ZHANG S Z, DAM J K, NORKJAER S,et al.Erosion of wind turbine blade coatings-design and analysis of jet-based laboratory equipment for performance evaluation[J].Progress in Organic Coatings,2015,78(1):103-115 10.1016/j.porgcoat.2014.09.016 [16] GRANT G, TABAKOFF W.Erosion prediction in turbomachinery resulting from environmental solid particles[J].Journal of Aircraft,2012,12(5):471-478 10.2514/3.59826 [17] 赵少汴.有限寿命疲劳设计法的基础曲线[J].机械设计,1999(11):5-7 [18] BADR H M, HABIB M A,BEN M R,et al.Numerical investigation of erosion threshold velocity in a pipe with sudden contraction[J].Computers & Fluids,2005,34(6):721-742 10.1016/j.compfluid.2004.05.010
计量
- 文章访问数: 2727
- HTML全文浏览数: 2550
- PDF下载数: 136
- 施引文献: 0