养耕共生系统中含氮污染物的去除特性

张博宇, 罗鹏翾, 庞浩然, 高月淑, 张振家, 李春杰. 养耕共生系统中含氮污染物的去除特性[J]. 环境工程学报, 2018, 12(5): 1501-1509. doi: 10.12030/j.cjee.201710116
引用本文: 张博宇, 罗鹏翾, 庞浩然, 高月淑, 张振家, 李春杰. 养耕共生系统中含氮污染物的去除特性[J]. 环境工程学报, 2018, 12(5): 1501-1509. doi: 10.12030/j.cjee.201710116
ZHANG Boyu, LUO Pengxuan, PANG Haoran, GAO Yueshu, ZHANG Zhenjia, LI Chunjie. Nitrogen pollutants removal characteristics in aquaponic system[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1501-1509. doi: 10.12030/j.cjee.201710116
Citation: ZHANG Boyu, LUO Pengxuan, PANG Haoran, GAO Yueshu, ZHANG Zhenjia, LI Chunjie. Nitrogen pollutants removal characteristics in aquaponic system[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1501-1509. doi: 10.12030/j.cjee.201710116

养耕共生系统中含氮污染物的去除特性

  • 基金项目:

    上海市科学技术发展基金资助项目(16ZR1417400)

Nitrogen pollutants removal characteristics in aquaponic system

  • Fund Project:
  • 摘要: 为了研究养耕共生系统对循环养殖水质的控制效果,尤其是对含氮污染物的去除效果,在实验大棚内搭建了养耕共生系统,考察了循环系统90 d运行过程中的水质状况及鱼菜生长状况。在此基础上,通过静态运行实验分别考察了水耕栽培单元(平板种植架和管廊种植架)和固定化微生物单元(包埋硝化菌和弹性填料)对含氮污染物的净化效果。结果表明:循环运行实验中,高、低密度养殖池中TAN和NO2-N均保持在安全浓度以下,鱼类和蔬菜生长良好且有明显生物量增长;静态实验中,2种水耕栽培单元内TAN、NO2-N和NO3-N浓度随反应时间下降,且与时间呈线性关系,空心菜对NO3-N的净化速率最快,TAN其次, NO2-N最慢;2种固定化微生物单元对TAN和NO2-N的去除符合一级反应动力学特征,低浓度下降解能力显著;水耕栽培单元对循环养殖水中含氮污染物均有明显的去除作用,平板种植架对TAN、NO2-N、NO3-N和TN的24 h去除率分别为71.41%、45.72%、21.93%和23.14%,管廊种植架对上述指标的24 h去除率分别为43.54%、38.23%、19.12%和20.01%;固定化包埋微生物单元对TAN和NO2-N有明显的去除作用,包埋硝化菌对TAN和NO2-N的24 h去除率分别为65.51%和43.42%,弹性填料对上述指标的24 h去除率分别为7.53%和8.14%。
  • 加载中
  • [1] BERNSTEIN S.Aquaponic Gardening: A Step-by-Step Guide to Raising Vegetables and Fish Together[M].Gabriola Island:New Society Publishers,2011:5-10
    [2] RAKOCY J E.Aquaponics-Integrating Fish and Plant Culture[M].Oxford: Wiley-Blackwell, 2012:344-386
    [3] 萧蕾,刘雅琦, 肖毅强.美国养耕共生系统技术简析与展望[J]. 南方建筑,2014(4):124-128
    [4] THORARINSDOTTIR R I.Aquaponics Guidelines[M].Reykjavik:Haskolaprent, 2015:18-26
    [5] MEDINA M, JAYACHANDRAN K, BHAT M G, et al.Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system[J].Aquaculture International,2016,24(1):415-427 10.1007/s10499-015-9934-3
    [6] LOVE D C, FRY J P, LI X, et al.Commercial aquaponics production and profitability: Findings from an international survey[J].Aquaculture,2015,435:67-74 10.1016/j.aquaculture.2014.09.023
    [7] RAKOCY J E, SHULTZ R C, BAILEY D S, et al.Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system[J].Acta Horticulturae,2004,648:63-69 10.17660/ActaHortic.2004.648.8
    [8] RAKOCY J E, BAILEY D S, SHULTZ R C, et al.Preliminary evaluation of organic waste from two aquaculture systems as a source of inorganic nutrients for hydroponics[J].Acta Horticulturae,2005,742:201-208 10.17660/ActaHortic.2007.742.27
    [9] WANG J, BOGDAN S, DEANA J, et al.Update on tilapia and vegetable production in the UVI aquaponic system[J].Angewandte Chemie,2010,49(23):4056-4060
    [10] PANTANELLA E, DANAHER J, RAKOCY J E, et al.Alternative media types for seedling production of lettuce and basil[J].Acta Horticulturae,2011,891:257-264 10.17660/ActaHortic.2011.891.31
    [11] DEDIU L, CRISTEA V, XIAOSHUAN Z.Waste production and valorization in an integrated aquaponic system with bester and lettuce[J].African Journal of Biotechnology,2012,11(9):2349-2358 10.5897/AJB11.2829
    [12] WONGKIEW S, HU Z, CHANDRAN K, et al.Nitrogen transformations in aquaponic systems: A review[J].Aquacultural Engineering,2017,76:9-19 10.1016/j.aquaeng.2017.01.004
    [13] EBELING J M, TIMMONS M B.Recirculating Aquaculture Systems[M].Oxford:Wiley-Blackwell,2012:245-277
    [14] GRABER A, JUNGE R.Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production[J].Desalination,2009,246(1/2/3):147-156 10.1016/j.desal.2008.03.048
    [15] DIVER S.Aquaponics-integration of hydroponics with aquaculture[J/OL]. [2018-01-29].https://attra.ncat.org/attra-pub/summaries/summary.php?pub=56.pdf, 2006
    [16] EL-SAYED A F M.Tilapia Culture[M].Cambridge: CABI Publishing,2006:3-9
    [17] SEAWRIGHT D E, STICKNEY R R, WALKER R B.Nutrient dynamics in integrated aquaculture–hydroponics systems[J].Aquaculture,1998,160(3):215-237 10.1016/S0044-8486(97)00168-3
    [18] LAM S S, MA N L, JUSOH A, et al.Biological nutrient removal by recirculating aquaponic system: Optimization of the dimension ratio between the hydroponic & rearing tank components[J].International Biodeterioration & Biodegradation,2015,102:107-115 10.1016/j.ibiod.2015.03.01
    [19] GRANADA L, SOUSA N, LOPES S, et al.Is integrated multitrophic aquaculture the solution to the sectors’ major challenges: A review[J].Reviews in Aquaculture,2016,8(3):283-300 10.1111/raq.12093
    [20] TURCIOS A E, PAPENBROCK J.Sustainable treatment of aquaculture effluents: What can we learn from the past for the future?[J].Sustainability, 2014, 6(2):836-856 10.3390/su6020836
    [21] MASSER M P, RAKOCY J E, LOSORDO T M.Recirculating aquaculture tank production systems[J].World Agriculture,2001,32(1):18-22
    [22] DELONG D P, LOSORDO T.How to Start a Biofilter[M].Stoneville:SRAC Publications,2012:10-14
    [23] 宋红桥,管崇武,李月. 水培植物对循环水养鱼系统的水质净化研究[J]. 渔业现代化, 2013, 40(4):18-20 10.3969/j.issn.1007-9580.2013.04.004
    [24] 吕哲,倪志凡,肖德茂,等. 生态坝对阳澄湖养殖水体的原位修复研究[J]. 中国给水排水,2015,31(1):22-26
    [25] 倪志凡,黎岭芳,陆嘉麒,等. 生态坝微生物与水生植物的水质净化机制研究[J]. 中国给水排水,2016,32(5):32-37
    [26] 欧阳丽华,周伟丽,张振家,等. 包埋固定化微生物的硫自养反硝化实验研究[J]. 环境科学,2011,32(6):1644-1652
    [27] 王静萱,李军,张振家,等. 固定化包埋颗粒对二级出水深度脱氮特性研究[J]. 环境科学学报,2013,33(2):389-394
    [28] 葛晓虹,张振家,王毅军. 固定化包埋硝化菌去除源水中氨氮研究[J]. 中国给水排水,2006,22(3):51-54 10.3321/j.issn:1000-4602.2006.03.014
    [29] 董亚梅. 聚氨酯包埋硝化菌颗粒的制备及其应用研究[D]. 上海:上海交通大学,2012
    [30] 国家环境保护总局.水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002:211-243
    [31] WALSH R, MARTIN E, DARVESH S.A method to describe enzyme-catalyzed reactions by combining steady state and time course enzyme kinetic parameters[J].Biochimicaet Biophysica Acta, 2010, 1800(1):1-5 10.1016/j.bbagen.2009.10.007
    [32] 王璐,迟莉娜,乔向利,等. 固定化包埋硝化菌处理微污染源水的研究[J]. 中国给水排水,2008,24(3):56-59 10.3321/j.issn:1000-4602.2008.03.015
  • 加载中
计量
  • 文章访问数:  2341
  • HTML全文浏览数:  2043
  • PDF下载数:  322
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

养耕共生系统中含氮污染物的去除特性

  • 1. 上海交通大学环境科学与工程学院,上海 200240
基金项目:

上海市科学技术发展基金资助项目(16ZR1417400)

摘要: 为了研究养耕共生系统对循环养殖水质的控制效果,尤其是对含氮污染物的去除效果,在实验大棚内搭建了养耕共生系统,考察了循环系统90 d运行过程中的水质状况及鱼菜生长状况。在此基础上,通过静态运行实验分别考察了水耕栽培单元(平板种植架和管廊种植架)和固定化微生物单元(包埋硝化菌和弹性填料)对含氮污染物的净化效果。结果表明:循环运行实验中,高、低密度养殖池中TAN和NO2-N均保持在安全浓度以下,鱼类和蔬菜生长良好且有明显生物量增长;静态实验中,2种水耕栽培单元内TAN、NO2-N和NO3-N浓度随反应时间下降,且与时间呈线性关系,空心菜对NO3-N的净化速率最快,TAN其次, NO2-N最慢;2种固定化微生物单元对TAN和NO2-N的去除符合一级反应动力学特征,低浓度下降解能力显著;水耕栽培单元对循环养殖水中含氮污染物均有明显的去除作用,平板种植架对TAN、NO2-N、NO3-N和TN的24 h去除率分别为71.41%、45.72%、21.93%和23.14%,管廊种植架对上述指标的24 h去除率分别为43.54%、38.23%、19.12%和20.01%;固定化包埋微生物单元对TAN和NO2-N有明显的去除作用,包埋硝化菌对TAN和NO2-N的24 h去除率分别为65.51%和43.42%,弹性填料对上述指标的24 h去除率分别为7.53%和8.14%。

English Abstract

参考文献 (32)

目录

/

返回文章
返回