不同添加剂强化低丰度厌氧氨氧化菌群的比较

姚丽, 张俊亚, 王红艳, 王元月, 魏源送. 不同添加剂强化低丰度厌氧氨氧化菌群的比较[J]. 环境工程学报, 2018, 12(5): 1490-1500. doi: 10.12030/j.cjee.201708188
引用本文: 姚丽, 张俊亚, 王红艳, 王元月, 魏源送. 不同添加剂强化低丰度厌氧氨氧化菌群的比较[J]. 环境工程学报, 2018, 12(5): 1490-1500. doi: 10.12030/j.cjee.201708188
YAO Li, ZHANG Junya, WANG Hongyan, WANG Yuanyue, WEI Yuansong. Comparisons of enhancement of low abundance anammox bacteria through different additives[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1490-1500. doi: 10.12030/j.cjee.201708188
Citation: YAO Li, ZHANG Junya, WANG Hongyan, WANG Yuanyue, WEI Yuansong. Comparisons of enhancement of low abundance anammox bacteria through different additives[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1490-1500. doi: 10.12030/j.cjee.201708188

不同添加剂强化低丰度厌氧氨氧化菌群的比较

  • 基金项目:

    国家重点研发计划课题(2016YFD0501405)

    国家水体污染控制与治理科技重大专项 (2013ZX07312-001,2015ZX07203-005,2017ZX07102)

    国家自然科学基金资助项目(21607167)

    江西省科技计划项目(20151BBG70006)

Comparisons of enhancement of low abundance anammox bacteria through different additives

  • Fund Project:
  • 摘要: 以来源于一体式部分亚硝化-厌氧氨氧化(combined partial nitrification-anammox, CPNA)序批式反应器(sequencing batch reactor, SBR)工艺的活性污泥为对象,通过厌氧批式实验,比较3种添加剂(Fe2+、氧化石墨烯、Fe3+)投加后对厌氧氨氧化菌的脱氮效果、活性、关键功能基因数量、群落结构和功能丰度的影响。实验结果表明:经过42 d的厌氧培养后,3种添加剂对厌氧氨氧化脱氮性能都有一定的强化作用,投加氧化石墨烯提高效果最好,它的总氮去除率最高能达到76.01%,平均总氮去除率高于对照组22.71%;而投加Fe2+和Fe3+组的平均总氮去除率分别仅高于对照组5.69%和1.72%。投加3种添加剂均能提高厌氧氨氧化菌活性,其中氧化石墨烯组的活性比对照组提高8.08%,Fe3+组的活性比对照组提高10.02%。投加氧化石墨烯对厌氧氨氧化菌代谢过程中hzo基因数量的提高效果最好,比对照组提高6.83倍,投加Fe2+和Fe3+分别比对照组提高5.14倍和4.90倍;且投加氧化石墨烯对浮霉菌门富集扩培效果最好,其丰度比对照组提高44.51%,而投加Fe2+和Fe3+后丰度结果分别比对照组提高1.03%和稍低于对照组。投加氧化石墨烯对微生物代谢功能的提升效果最佳。
  • 加载中
  • [1] MULDER A, VAN D G A A, ROBERTSON L A, et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiology Ecology, 1995, 16(3):177–184 10.1016/0168-6496(94)00081-7
    [2] STROUS M, HEIJNEN J J, KUENEN J G, et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596 10.1007/s002530051340
    [3] IBRAHIM M, YUSOF N, YUSOFF M Z M, et al.Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: A review[J].Desalination and Water Treatment,2016,57(30):13958-13978 10.1080/19443994.2015.1063009
    [4] 胡倩怡,郑平,康达.厌氧氨氧化菌的种类、特性与检测[J]. 应用与环境生物学报,2017,23(2):384-391 10.3724/SP.J.1145.2016.04022.
    [5] 郑平.新型生物脱氮理论与技术[M]. 北京:科学出版社,2004
    [6] 秦玉洁,周少奇,朱明石.厌氧氨氧化反应器微生态的研究[J]. 环境科学,2008,29(6):1638-1643 10.3321/j.issn:0250-3301.2008.06.032
    [7] STROUS M, PELLETIER E, MANGENOT S, et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794 10.1038/nature04647
    [8] STROUS M, KUENEN J G, JETTEN M S M.Key physiology of anaerobic ammonium oxidation[J].Applied and Environmental Microbiology,1999,65(7):3248-3250
    [9] JETTEN M S M, NIFTRIK L V, STROUS M, et al.Biochemistry and molecular biology of anammox bacteria[J].Critical Reviews in Biochemistry and Molecular Biology,2009,44(2/3):65-84 10.1080/10409230902722783
    [10] 王元月,魏源送,张树军.厌氧氨氧化技术处理高浓度氨氮工业废水的可行性分析[J]. 环境科学学报,2013,33(9):2359-2368
    [11] VAN D U, JETTEN M S, VAN L M C.The Sharon-anammox process for treatment of ammonium rich wastewater[J].Water Science and Technology,2001,44(1):153-160
    [12] THIRD K A, SLIEKERS A O, KUENEN J G, et al.The canon system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria[J].Systematic and Applied Microbiology,2001,24(4):588-596 10.1078/0723-2020-00077
    [13] WETT B.Development and implementation of a robust deammonification process[J].Water Science & Technology,2007,56(7):81-88 10.2166/wst.2007.611
    [14] WINDEY K, BO I D, VERSTRATE W.Oxygen-limited autotrophic nitrification–denitrification (oland) in a rotating biological contactor treating high-salinity wastewater[J].Water Research,2005,39(18):4512-4520 10.1016/j.watres.2005.09.002
    [15] YAMAMOTO S, ASANUMA T, TAKAGI T, et al.The development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a single reactor for nitrogen removal[J].Bioresource Technology,2009,100(4):1548-1554 10.1016/j.biortech.2008.09.003
    [16] SUSANNE L, GILBERT E M, VLAEMINCK S E, et al.Full-scale partial nitritation/anammox experiences: An application survey[J].Water Research,2014,55:292-303 10.1016/j.watres.2014.02.032
    [17] ALI M, OSHIKI M, RATHNAYAKE L, et al.Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads[J].Water Research,2015,79:147-157 10.1016/j.watres.2015.04.024
    [18] QIAO S, BI Z, ZHOU J T, et al.Long term effects of divalent ferrous ion on the activity of anammox biomass[J].Bioresource Technology,2013,142:490-497 10.1016/j.biortech.2013.05.062
    [19] SHU D, HE Y, YUE H, et al.Effects of Fe (II) on microbial communities and nitrogen transformation pathway of nitrogen and iron cycling in the anammox process: Kinetic, quantitative molecular mechanism and metagenomic analysis[J].RSC Advances,2016,6(72): 68005–68016 10.1039/C6RA09209H
    [20] CHEN H, YU J J, JIA X Y, et al.Enhancement of anammox performance by Cu(II), Ni(II) and Fe(III) supplementation[J].Chemosphere,2014,117:610-616 10.1016/j.chemosphere.2014.09.047
    [21] GAO F, ZHANG H M, YANG F L, et al.The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4 ) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J].Process Biochemistry, 2014, 49(11):1970-1978 10.1016/j.procbio.2014.07.019
    [22] KARADAG D, PUHAKKA J A.Enhancement of anaerobic hydrogen production by iron and nickel[J].International Journal of Hydrogen Energy,2010,35(16):8554-8560 10.1016/j.ijhydene.2010.04.174
    [23] HUANG X L, GAO D W, PENG S, et al.Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors[J].Journal of Environmental Sciences, 2014,26(5):1034-1039 10.1016/S1001-0742(13)60531-8
    [24] QIAO S, BI Z, ZHOU J T , et al.Long term effect of MnO2 powder addition on nitrogen removal by anammox process[J].Bioresource Technology,2012,124(337):520-525 10.1016/j.biortech.2012.07.088
    [25] WANG D, WANG G, ZHANG G, et al.Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal[J].Bioresource Technology,2013, 131(2): 527-530 10.1016/j.biortech.2013.01.099
    [26] LIU S T, YANG F L, MENG F G, et al.Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field[J].Journal of Biotechnology,2008,138(3/4):96-102 10.1016/j.jbiotec.2008.08.002
    [27] LEDNEV V V.Possible mechanism for the influence of weak magnetic fields on biological systems[J].Bioelectromagnetics,1991,12(2):71-75
    [28] QIAO S, YIN X, ZHOU J, et al.Inhibition and recovery of continuous electric field application on the activity of anammox biomass[J].Biodegradation,2014,25(4):505-513 10.1007/s10532-013-9677-7
    [29] DUAN X, ZHOU J, QIAO S, et al.Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal[J].Bioresource Technology,2011,102(5):4290-4293 10.1016/j.biortech.2010.12.050
    [30] ZEKKER I, KROON K, RIKMANN E, et al.Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor[J].Biodegradation,2012,23(5):739-749 10.1007/s10532-012-9549-6
    [31] WANG Y Y, WANG H Y, ZHANG J Y, et al.Deciphering the evolution of the functional genes and microbial community of the combined partial nitritation-anammox process with nitrate build-up and its in situ restoration [J].RSC Advances, 2016, 6(113): 111702-111712 10.1039/C6RA23865C
    [32] VAN N L, GEERTS W J C, VAN D E G, et al.Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria[J].Journal of Structural Biology,2007,161(3):401-410 10.1016/j.jsb.2007.05.005
    [33] VAN N L, GEERTS W J C, VAN D E G, et al.Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: Cell plan, glycogen storage, and localization of cytochrome C proteins[J].Journal of Bacteriology,2007,190(2):708-717 10.1128/JB.01449-07
    [34] AKHAVAN O, GHADERI E.Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation[J].Journal of Physical Chemistry C,2009,113(47):20214-20220 10.1021/jp906325q
    [35] RUIZ O N, FERNANDO K A S, WANG B J, et al.Graphene oxide: A nonspecific enhancer of cellular growth[J].ACS 10.1021/nn202699t
    [36] WANG Y Y, WANG Y W, WEI Y S, et al.In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up[J].Biochemical Engineering Journal,2015,98:127-136 10.1016/j.bej.2015.02.028
    [37] GRAAF A A V D.Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J].Microbiology, 1996, 142(8): 2187-2196 10.1099/13500872-142-8-2187
    [38] 国家环境保护总局.水和废水监测分析方法[M].4版. 北京:中国环境科学出版社,2002
    [39] 刘涛,李冬,曾辉平,等.常温下CANON反应器中功能微生物的沿程分布[J]. 哈尔滨工业大学学报, 2012, 44(10): 22-27
    [40] SCHMID M C, HOOPER A B, KLOTZ M G, et al.Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria [J].Environmental Microbiology,2008,10(11):3140-3149 10.1111/j.1462-2920.2008.01732.x
    [41] LANGILLE M G, ZANEVELD J, CAPORASO J G, et al.Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J].Nature Biotechnology,2013,31(9):814 10.1038/nbt.2676
    [42] DAIMS H, LEBEDEVA E V, PJEVAC P, et al.Complete nitrification by Nitrospira bacteria[J].Nature,2015,528(7583):504-509 10.1038/nature16461
    [43] 布坎南. 伯杰细菌鉴定手册[M]. 8版.北京:科学出版社, 1984:80-82 10.3969/j.issn.1673-4696.2001.06.034
    [44] 郭建华,王淑莹,郑雅楠,等.实时控制实现短程硝化过程中种群结构的演变[J].哈尔滨工业大学学报,2010,42(8):1259-1263
    [45] WANG Y Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a canon system in response to salt stress[J].Chemical Engineering Journal,2017,317:512-521 10.1016/j.cej.2017.02.096
    [46] REGMI P, MILLER M M, HOLGATE B, et al.Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation[J].Water Research,2014,57:162-171 10.1016/j.watres.2014.03.035
    [47] LIU G, WANG J.Long-term low do enriches and shifts nitrifier community in activated sludge[J].Environmental Science & Technology,2013,47(10):5109-5117 10.1021/es304647y
  • 加载中
计量
  • 文章访问数:  2229
  • HTML全文浏览数:  1887
  • PDF下载数:  330
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

不同添加剂强化低丰度厌氧氨氧化菌群的比较

  • 1. 中国科学技术大学生命科学学院,合肥 230026
  • 2. 中国科学院生态环境研究中心,环境模拟与污染控制国家重点联合实验室,北京 100085
  • 3. 中国科学院生态环境研究中心,水污染控制实验室,北京 100085
  • 4. 江西省科学院能源研究所,南昌 330029
基金项目:

国家重点研发计划课题(2016YFD0501405)

国家水体污染控制与治理科技重大专项 (2013ZX07312-001,2015ZX07203-005,2017ZX07102)

国家自然科学基金资助项目(21607167)

江西省科技计划项目(20151BBG70006)

摘要: 以来源于一体式部分亚硝化-厌氧氨氧化(combined partial nitrification-anammox, CPNA)序批式反应器(sequencing batch reactor, SBR)工艺的活性污泥为对象,通过厌氧批式实验,比较3种添加剂(Fe2+、氧化石墨烯、Fe3+)投加后对厌氧氨氧化菌的脱氮效果、活性、关键功能基因数量、群落结构和功能丰度的影响。实验结果表明:经过42 d的厌氧培养后,3种添加剂对厌氧氨氧化脱氮性能都有一定的强化作用,投加氧化石墨烯提高效果最好,它的总氮去除率最高能达到76.01%,平均总氮去除率高于对照组22.71%;而投加Fe2+和Fe3+组的平均总氮去除率分别仅高于对照组5.69%和1.72%。投加3种添加剂均能提高厌氧氨氧化菌活性,其中氧化石墨烯组的活性比对照组提高8.08%,Fe3+组的活性比对照组提高10.02%。投加氧化石墨烯对厌氧氨氧化菌代谢过程中hzo基因数量的提高效果最好,比对照组提高6.83倍,投加Fe2+和Fe3+分别比对照组提高5.14倍和4.90倍;且投加氧化石墨烯对浮霉菌门富集扩培效果最好,其丰度比对照组提高44.51%,而投加Fe2+和Fe3+后丰度结果分别比对照组提高1.03%和稍低于对照组。投加氧化石墨烯对微生物代谢功能的提升效果最佳。

English Abstract

参考文献 (47)

目录

/

返回文章
返回