絮凝与电絮凝对含铀废水的处理效果对比

高旭, 李鹏, 王学刚, 郭亚丹, 廖平平, 刘志朋, 樊骅. 絮凝与电絮凝对含铀废水的处理效果对比[J]. 环境工程学报, 2018, 12(2): 488-496. doi: 10.12030/j.cjee.201708070
引用本文: 高旭, 李鹏, 王学刚, 郭亚丹, 廖平平, 刘志朋, 樊骅. 絮凝与电絮凝对含铀废水的处理效果对比[J]. 环境工程学报, 2018, 12(2): 488-496. doi: 10.12030/j.cjee.201708070
GAO Xu, LI Peng, WANG Xuegang, GUO Yadan, LIAO Pingping, LIU Zhipeng, FAN Hua. Comparison of treatment efficiency of uranium(Ⅵ) containing wastewater using flocculation and electrocoagulation processes[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 488-496. doi: 10.12030/j.cjee.201708070
Citation: GAO Xu, LI Peng, WANG Xuegang, GUO Yadan, LIAO Pingping, LIU Zhipeng, FAN Hua. Comparison of treatment efficiency of uranium(Ⅵ) containing wastewater using flocculation and electrocoagulation processes[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 488-496. doi: 10.12030/j.cjee.201708070

絮凝与电絮凝对含铀废水的处理效果对比

  • 基金项目:

    国家自然科学基金资助项目(51564001)

    江西省青年基金资助项目(20161BAB213091,20171BAB213019)

    江西省教育厅科技项目(GJJ160579)

    东华理工大学核资源与环境国家重点实验室培育基地开放基金和自主基金项目(NRE1513,Z1602)

Comparison of treatment efficiency of uranium(Ⅵ) containing wastewater using flocculation and electrocoagulation processes

  • Fund Project:
  • 摘要: 采用絮凝法与电絮凝法对低浓度放射性含铀废水的处理进行了对比研究。结果表明:絮凝法除铀的主要影响因素是pH和絮凝剂投加量,在pH为7.0、PAC投加量为300 mg·L-1、搅拌速度为45 r·min-1的条件下,铀去除率达97.94%;电絮凝法除铀的主要影响因素是pH和电流密度,在pH为5.0、电流密度2.4 mA·cm-2、通电时间24 min的条件下,铀去除率达99.11%;电絮凝法除铀动力学特征符合一级动力学模型,在不同pH条件下的线性相关系数均大于0.91。絮凝法和电絮凝法水处理成本分别为0.61元·t-1和0.45元·t-1,絮体产生量分别为258 g·t-1和171.5 g·t-1。采用絮凝法和电絮凝法均可实现废水中铀的高效去除,但电絮凝除铀工艺较传统絮凝法具有易自动化控制、处理成本低、絮体产生量低等优点,具有较好的推广应用前景。
  • 加载中
  • [1] NASER H A.Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf:A review[J].Marine Pollution Bulletin,2013,2(1):6-13
    [2] ALATTAR A M.Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice[J].Saudi Journal of Biological Sciences,2011,8(4):395-401
    [3] 黄韵清,孙傅,曾思育,等.污水深度处理中超滤工艺对有机物的截留模型[J].中国环境科学,2015,5(2):420-426
    [4] 张学俊,曾坚贤,张鹏,等.化学沉淀-微滤-络合-超滤处理高浓度含镍废水[J].中国环境科学,2016,6(4):1106-1111
    [5] 汪萍,张露,魏国良,等.含氟含铀废水氟化钙共沉淀试验研究[J].现代化工,2016,6(7):138-141
    [6] 汪萍,吕彩霞,盛青,等.含铀废水处理技术的研究进展[J].现代化工,2016,6(12):23-27
    [7] OSCAR P.Theory and practice of the removal of heavy metal ions by their precipitation as ferrite-type compounds from aqueous solution at ambient temperature[J].Metallurgical Review of MMIJ,2001,7(2):137-179
    [8] LADEIRA A C, GONCALVES C R.Influence of anionic species on uranium separation from acid mine water using strong base resins[J].Journal of Hazardous Materials,2007,8(3):499-504
    [9] ANIRUDHAN T S, RADHAKRISHNAN P G.Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(Ⅵ) from water and nuclear industry wastewater[J].Journal of Environmental Radioactivity,2009,0(3):250-257
    [10] 侯若梦,贾瑛.放射性废水处理技术研究进展[J].环境工程,2014,2(S1):57-60
    [11] CAVACO S A, FERNANDES S, QUINA M M, et al.Removal of chromium from electroplating industry effluents by ion exchange resins[J].Journal of Hazardous Materials,2007,4(3):634-638
    [12] ABADI S R H, SEBZARI M R, HEMATI M, et al.Ceramic membrane performance in microfiltration of oily wastewater[J].Desalination,2011,5(1/2/3):222-228
    [13] 赵卷.超滤在放射性废水处理中的应用进展[J].核科学与工程,2015,5(2):358-366
    [14] KESHTKAR A R, MOHAMMADI M, MOOSAVIAN M A.Equilibrium biosorption studies of wastewater U(Ⅵ), Cu(Ⅱ) and Ni(Ⅱ) by the brown alga Cystoseira indica, in single, binary and ternary metal systems[J].Journal of Radioanalytical & Nuclear Chemistry,2015,3(1):363-376
    [15] AYTAS S, GUNDUZ E, GOK C.Biosorption of uranium ions by marine macroalga padina pavonia[J].Acta Hydrochimica Et Hydrobiologica,2014,2(4):498-506
    [16] ERKAYA I A, ARICA M Y, AKBULUT A, et al.Biosorption of uranium(Ⅵ) by free and entrapped Chlamydomonas reinhardtii:Kinetic, equilibrium and thermodynamic studies[J].Journal of Radioanalytical & Nuclear Chemistry,2014,9(3):1993-2003
    [17] 王长福,刘峙嵘,薛桂荣,等.葵花籽壳对溶液中铀酰离子的吸附[J].核化学与放射化学,2016,8(2):107-115
    [18] 李鑫,胡洪营,余骏一,等.放射性废水处理中吸附铀的优势藻种筛选[J].环境科学,2016,7(5):1858-1863
    [19] 张晓峰,陈迪云,彭燕,等.丁二酸改性茶油树木屑吸附铀的研究[J].环境科学,2015,6(5):1686-1693
    [20] 杨婷婷,徐晓军.混凝沉淀法处理含铅矿坑涌水[J].化工进展,2015,4(6):1799-1803
    [21] 王建兵,李亚男,蒋雯婷,等.混凝沉淀处理高浊高铁锰矿井水试验研究[J].中国矿业大学学报,2013,2(1):141-146
    [22] 严群,桂勇刚,周娜娜,等.混凝沉淀法处理含砷选矿废水[J].环境工程学报,2014,8(9):3683-3688
    [23] 郭朝晖,姜智超,刘亚男,等.混凝沉淀法处理钨多金属矿选矿废水[J].中国有色金属学报,2014,4(9):2393-2399
    [24] 任俊树,牟涛,杨胜亚,等.絮凝沉淀处理含盐量较高的铀、钚低放废水[J].核化学与放射化学,2008,0(4):201-205
    [25] 李爽,邱春生,孙力平,等.铝板电絮凝法去除重金属离子Cd2+和Ni2+[J].环境工程学报,2016,0(6):2855-2861
    [26] 郑志勇,徐海音,宋佩佩,等.电絮凝在水处理中的研究进展[J].现代化工,2015,5(4):29-32
    [27] ODONGO I E, MCFARLAND M J.Electrocoagulation treatment of metal finishing wastewater[J].Water Environment Research,2014,6(7):579-83
    [28] BEYAZIT N.Copper(Ⅱ), chromium(Ⅵ) and nickel(Ⅱ) removal from metal plating effluent by electrocoagulation[J].International Journal of Electrochemical Science,2014,9(8):4315-4330
    [29] 王海东,陈发源,杨春风,等.电混凝处理电镀综合废水[J].环境工程学报,2013,7(10):3833-3838
    [30] 周好磊,李少林,魏宏斌,等.低电流电絮凝法去除废水中重金属离子的研究[J].中国给水排水,2017,3(5):85-88
    [31] 钱丽娟,胡佩卓,蒋正江,等.pH、富里酸和温度对铀酰在ZrP2O7上的吸附影响[J].中国科学:化学,2010,0(11):1712-1720
    [32] 鞠佳伟,高玉萍,何赞,等.pH对铝盐絮凝剂形态分布与混凝除氟性能的影响[J].环境工程学报,2015,9(6):2563-2568
    [33] 张卫飞.聚合氯化铝中Al(Ⅲ)的形态分布影响因素及混凝性能研究[D].杭州:浙江大学,2003
    [34] LIU Y H, WANG Y Q, ZHANG Z B, et al.Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent[J].Applied Surface Science,2013,3(6):68-74
    [35] 陈桂霞,胡承志,朱灵峰,等.铝盐混凝除砷影响因素及机制研究[J].环境科学,2013,4(4):1386-1391
    [36] 胡晓勇,王盼盼.聚合氯化铝对消毒副产物前体物的混凝去除效能[J].中国给水排水,2016,2(17):61-64
    [37] 王光辉,王学刚.水处理工程[M].北京:中国环境科学出版社,2015:261-280
    [38] 李爽,邱春生,孙力平,等.铝板电絮凝法去除重金属离子Cr(Ⅵ)的研究[J].工业水处理,2016,6(1):48-51
    [39] 杨波,张峰振,张鸿,等.电絮凝处理含Cu2+废水的影响机制研究[J].环境科学与技术,2014,7(2):53-56
    [40] 刘玉玲,陆君,马晓云,等.电絮凝过程处理含铬废水的工艺及机理[J].环境工程学报,2014,8(9):3640-3644
    [41] TCHAMANGO S, NANSEU-NJIKI C P, NGAMENI E, et al.Treatment of dairy effluents by electrocoagulation using aluminium electrodes[J].Science of the Total Environment,2010,8(4):947-952
    [42] BAYAR S, YILDIZ Y S, YILMAZ A E, et al.The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method[J].Desalination,2011,0(1/2/3):103-107
  • 加载中
计量
  • 文章访问数:  4142
  • HTML全文浏览数:  3699
  • PDF下载数:  497
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

絮凝与电絮凝对含铀废水的处理效果对比

  • 1. 东华理工大学水资源与环境工程学院,南昌330013
  • 2. 东华理工大学核资源与环境国家重点实验室培育基地,南昌330013
基金项目:

国家自然科学基金资助项目(51564001)

江西省青年基金资助项目(20161BAB213091,20171BAB213019)

江西省教育厅科技项目(GJJ160579)

东华理工大学核资源与环境国家重点实验室培育基地开放基金和自主基金项目(NRE1513,Z1602)

摘要: 采用絮凝法与电絮凝法对低浓度放射性含铀废水的处理进行了对比研究。结果表明:絮凝法除铀的主要影响因素是pH和絮凝剂投加量,在pH为7.0、PAC投加量为300 mg·L-1、搅拌速度为45 r·min-1的条件下,铀去除率达97.94%;电絮凝法除铀的主要影响因素是pH和电流密度,在pH为5.0、电流密度2.4 mA·cm-2、通电时间24 min的条件下,铀去除率达99.11%;电絮凝法除铀动力学特征符合一级动力学模型,在不同pH条件下的线性相关系数均大于0.91。絮凝法和电絮凝法水处理成本分别为0.61元·t-1和0.45元·t-1,絮体产生量分别为258 g·t-1和171.5 g·t-1。采用絮凝法和电絮凝法均可实现废水中铀的高效去除,但电絮凝除铀工艺较传统絮凝法具有易自动化控制、处理成本低、絮体产生量低等优点,具有较好的推广应用前景。

English Abstract

参考文献 (42)

目录

/

返回文章
返回