活性污泥体系中磷化氢生物降解特性

肖瑢, 刘树根, 杨希, 宁平. 活性污泥体系中磷化氢生物降解特性[J]. 环境工程学报, 2018, 12(3): 855-862. doi: 10.12030/j.cjee.201707088
引用本文: 肖瑢, 刘树根, 杨希, 宁平. 活性污泥体系中磷化氢生物降解特性[J]. 环境工程学报, 2018, 12(3): 855-862. doi: 10.12030/j.cjee.201707088
XIAO Rong, LIU Shugen, YANG Xi, NING Ping. Biodegradation characteristics of phosphine in activated sludge system[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 855-862. doi: 10.12030/j.cjee.201707088
Citation: XIAO Rong, LIU Shugen, YANG Xi, NING Ping. Biodegradation characteristics of phosphine in activated sludge system[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 855-862. doi: 10.12030/j.cjee.201707088

活性污泥体系中磷化氢生物降解特性

  • 基金项目:

    云南省科技计划面上项目 (2016FB093)

Biodegradation characteristics of phosphine in activated sludge system

  • Fund Project:
  • 摘要: 生物净化技术在低浓度磷化氢尾气处理方面有良好的应用前景,但磷化氢生物代谢的影响因素、特性等问题未有系统阐述。在生物法处理难溶有毒气体的基础上采用活性污泥体系净化磷化氢气体,探讨碳源、pH等因素对磷化氢生物降解特性的影响。磷化氢生物净化过程中,甲醇为碳源时微生物生长最好,最优C/N为15:1,适宜的pH为6.5~7.5。进口气中PH3浓度高于20 mg·m-3时,微生物的生长开始受到抑制,但生物体内的酶活性明显增强,表明微生物具有抵抗磷化氢毒害作用的特性。活性污泥体系中,PH3去除率最高可达78.0%,生物降解效果明显。
  • 加载中
  • [1] KAUR R, SCHLIPALIUS D I, COLLINS P J, et al.Inheritance and relative dominance, expressed as toxicity response and delayed development of phosphine resistance in immature stages of Rhyzopertha dominica (Coleoptera:Bostrichidae)[J].Journal of Stored Products Research,2012,51(2):74-80 10.1016/j.jspr.2012.08.002
    [2] 李丽,牛晓君,陆美青,等.环境中磷化氢对水稻根际环境与土壤有效磷的影响研究[J].环境科学学报,2015,35(6):1851-1857 10.13671/j.hjkxxb.2014.0939
    [3] NIU X J, LI L, WU H, et al.Effects of phosphine on enzyme activities and available phosphorus in rhizospheric and non-rhizospheric soils through rice seedlings[J].Plant & Soil,2015,387(1/2):143-151 10.1007/s11104-014-2280-9
    [4] 宁平, 易玉敏, 瞿广飞, 等.PdCl2-CuCl2 液相催化氧化净化黄磷尾气中PH3[J].中南大学学报(自然科学版),2009,40(2):340-345
    [5] GARCíA-TABARéS E, MARTíN D, GARCíA I, et al.Understanding phosphorus diffusion into silicon in a MOVPE environment for III-V on silicon solar cells[J].Solar Energy Materials & Solar Cells,2013,116(6):61-67 10.1016/j.solmat.2013.04.003
    [6] ISA Z M, FARRELL T W, FULFORD G R.Mathematical modelling and numerical simulation of phosphine flow during grain fumigation in leaky cylindrical silos[J].J Stored Product Research,2016,51(7):28:28-40 10.1016/j.jspr.2016.01.002
    [7] 汪丽军, 刘涛, 董书军, 等. 磷化氢熏蒸对桔小实蝇氧化代谢体系的影响研究[J]. 中国农学通报,2013,29(33):351-35 10.3969/j.issn.1000-6850.2013.33.063
    [8] HAN C, GENG J, REN H, et al.Phosphite in sedimentary interstitial water of Lake Taihu, a large eutrophic shallow lake in China[J].Environmental Science & Technology,2013,47(11):79-85 10.1021/es305297y
    [9] DéVAI I, FELF?LDY L, WITTNER I, et al.Detection of phosphine: New aspects of the phosphorus cycle in the hydrosphere [J].Nature,1988,333(26):343-345 10.1038/333343a0
    [10] MA M, YIN S, ZHANG L, et al.Effects of different conditions on degradation rate of exhaust gas of phosphine fumigation of grain by ozone ultraviolet light[J].Cereal & Feed Industry,2015,147(61):17-20
    [11] YU Q F, NING P, YI H H, et al.Effect of preparation conditions on the property Cu/AC adsorbents for phosphine adsorption[J].Separation Science & Technology,2012,47(3):527-533 10.1080/01496395.2011.614315
    [12] YANG Y, HUANG S, LIANG W, et al.Microbial removal of NOx at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter[J].Journal of Hazardous Materials,2012,203-204(4):326-332 10.1016/j.jhazmat.2011.12.031
    [13] 贡俊,张肇铭. 连续式生物吸收工艺脱除二氧化硫[J]. 环境工程学报,2012,6(3):954-960
    [14] 吕溪, 任爱玲, 张瑾, 等. 降解H2S功能菌的分离及降解特性[J]. 环境工程学报,2015,9(12):6173-6178
    [15] 刘树根, 肖瑢,王群超,等. 一种微生物处理磷化氢尾气的方法:CN106310920A[P].2017-01-11
    [16] DENG J, CHEN L, WEI W.The study on removal the PH3 in CO by dephosphorization bacteria[J].Advanced Materials Research,2013,781-784:861-868 10.4028/www.scientific.net/AMR.781-784.861
    [17] WANG J, LI L, NIU X, et al.Phosphine-induced phosphorus mobilization in the rhizosphere of rice seedlings[J].Journal of Soils & Sediments,2016,16(6):1735-1744 10.1007/s11368-016-1366-9
    [18] 罗国芝, 陈家捷, 于文杰,等. 一株新型异养硝化细菌处理养殖水的效果[J]. 环境工程学报,2016,10(8):4206-4212 10.12030/j.cjee.201503070
    [19] 袁勤生. 超氧化物歧化酶[M]. 上海: 华东理工出版社,2009
    [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版.北京: 中国环境科学出版社,2002
    [21] 孙洪伟, 赵华南, 吕心涛,等. 碳源类型对以NO2-为电子受体短程反硝化过程的长期和短期影响[J]. 环境工程学报,2016,10(9):4657-4662 10.12030/j.cjee.201504159
    [22] 刘秀红, 甘一萍, 杨庆,等. 碳源对反硝化生物滤池系统运行及微生物种群影响[J]. 水处理技术,2013,39(11):36-40 10.3969/j.issn.1000-3770.2013.11.008
    [23] 周群英, 王士芬.环境工程微生物学[M]. 4版. 北京: 高等教育出版社,2015
    [24] WANG C, WANG X, WANG P, et al.Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905[J].Ecotoxicology & Environmental Safety,2016,132(9):231-239 10.1016/j.ecoenv.2016.06.010
    [25] PAOLO B, LUCA S, RAFFAELE C, et al.Mitochondria and cell death[J].European Journal of Biochemistry,1999,264(3):687-701 10.1046/j.1432-1327.1999.00725.x
  • 加载中
计量
  • 文章访问数:  3953
  • HTML全文浏览数:  3534
  • PDF下载数:  565
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-03-22

活性污泥体系中磷化氢生物降解特性

  • 1. 昆明理工大学环境科学与工程学院, 昆明 650500
基金项目:

云南省科技计划面上项目 (2016FB093)

摘要: 生物净化技术在低浓度磷化氢尾气处理方面有良好的应用前景,但磷化氢生物代谢的影响因素、特性等问题未有系统阐述。在生物法处理难溶有毒气体的基础上采用活性污泥体系净化磷化氢气体,探讨碳源、pH等因素对磷化氢生物降解特性的影响。磷化氢生物净化过程中,甲醇为碳源时微生物生长最好,最优C/N为15:1,适宜的pH为6.5~7.5。进口气中PH3浓度高于20 mg·m-3时,微生物的生长开始受到抑制,但生物体内的酶活性明显增强,表明微生物具有抵抗磷化氢毒害作用的特性。活性污泥体系中,PH3去除率最高可达78.0%,生物降解效果明显。

English Abstract

参考文献 (25)

目录

/

返回文章
返回