蛋白类污染物在PVDF/GO杂化膜表面的吸附特性

徐亚伟, 朱振亚, 王磊, 姜家良, 李青青. 蛋白类污染物在PVDF/GO杂化膜表面的吸附特性[J]. 环境工程学报, 2018, 12(2): 441-447. doi: 10.12030/j.cjee.201706252
引用本文: 徐亚伟, 朱振亚, 王磊, 姜家良, 李青青. 蛋白类污染物在PVDF/GO杂化膜表面的吸附特性[J]. 环境工程学报, 2018, 12(2): 441-447. doi: 10.12030/j.cjee.201706252
XU Yawei, ZHU Zhenya, WANG Lei, JIANG Jialiang, LI Qingqing. Adsorption characteristics of protein contaminants in PVDF/GO hybrid membrane surface[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 441-447. doi: 10.12030/j.cjee.201706252
Citation: XU Yawei, ZHU Zhenya, WANG Lei, JIANG Jialiang, LI Qingqing. Adsorption characteristics of protein contaminants in PVDF/GO hybrid membrane surface[J]. Chinese Journal of Environmental Engineering, 2018, 12(2): 441-447. doi: 10.12030/j.cjee.201706252

蛋白类污染物在PVDF/GO杂化膜表面的吸附特性

  • 基金项目:

    陕西省重点科技创新团队计划(2017KCT-19-01)

    陕西省重点产业链(群)项目(2017ZDCXL-GY-07-03)

Adsorption characteristics of protein contaminants in PVDF/GO hybrid membrane surface

  • Fund Project:
  • 摘要: 为从微观层面探讨蛋白质在膜表面的污染特性,采用改性Hummers法制备出具有“二维结构”的氧化石墨烯(GO),制得不同GO添加量的改性膜,通过自制的镀膜芯片,结合耗散型石英晶体微天平(QCM-D)等研究了牛血清蛋白(BSA)对改性膜污染的动态过程。结果表明:GO表面含有大量的亲水性官能团,其添加量不同,改性膜的接触角呈现不同程度的降低,且改性膜的亲水性越高,BSA在膜面的吸附速率和饱和吸附量相对越低。吸附过程中污染物在改性膜面的吸附累积经历了2个阶段,吸附初始阶段BSA在膜面快速累积,污染层的黏弹性较小;吸附过程中GO改性膜表面的亲水性官能团促使水分子不断地渗透到污染层中,改变吸附层的构象,导致其黏弹性显著增大,使改性膜的抗污染性能得到有效提高。
  • 加载中
  • [1] CHAKRABARTY B,GHOSHAL A K,PURKAIT M K.Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane[J].Journal of Membrane Science,2008,5(1):427-437
    [2] BRZOZOWSKA A M,KEIZER A D,DETREMBLEUR C,et al.Grafted ionomer complexes and their effect on protein adsorption on silica and polysulfone surfaces[J].Colloid and Polymer Science,2010,8(16):1621-1632
    [3] MAGNENET C,JURIN F E,LAKARD S,et al.Polyelectrolyte modification of ultrafiltration membrane for removal of copper ions[J].Colloids & Surfaces A:Physicochemical & Engineering Aspects,2013,5:170-177
    [4] 张立卿,王磊,王旭东,等.城市污水二级出水有机物分子量分布和亲疏水特性对纳滤膜污染的影响[J].环境科学学报,2009,9(1):75-80
    [5] TANG S,WANG Z,Wu Z,et al.Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment[J].Journal of Hazardous Materials, 2010,8(1/2/3):377
    [6] CAO X,MA J,SHI X,et al.Effect of TiO2 nanoparticle size on the performance of PVDF membrane[J].Applied Surface Science,2006,3(4):2003-2010
    [7] ZHU Z Y, JIANG J L, WANG X D,et al.Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles[J].Chemical Engineering Journal,2016,4:266-276
    [8] FANG Q,CHEN B.Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification[J].Journal of Materials Chemistry,2014,2(23):8941-8951
    [9] DONG Z,WANG D,LIU X,et al.Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity[J].Journal of Materials Chemistry,2014,2(14):5034-5040
    [10] ZHU Z Y,WANG L,XU Y W,et al.Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection[J].Journal of Colloid & Interface Science,2017,4:429-439
    [11] WANG Z,YU H,XIA J,et al.Novel GO-blended PVDF ultrafiltration membranes[J].Desalination, 2012,9(8):50-54
    [12] SAFARPOUR M,KHATAEE A,VATANPOUR V.Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties[J].Industrial & Engineering Chemistry Research,2014,3(34):13370-13382
    [13] WANG N X, JI S L, LI J,et al.Poly(vinyl alcohol)-graphene oxide nanohybrid “pore-filling” membrane for pervaporation of toluene/n-heptane mixtures[J].Journal of Membrane Science,2014,5:113-120
    [14] 李瑞云.氧化石墨烯对聚合物分离膜的亲水改性研究[D].大连:大连理工大学,2012
    [15] 张奕,曾戎,周长忍,等.基于QCM-D的天然多糖材料的蛋白吸附研究[J].功能材料,2009,0(2):287-290
    [16] 韦晓兰.基于QCM-D技术的细菌生物膜研究[J].重庆师范大学学报(自然科学版),2014,1(4):136-140
    [17] 彭采宇.聚电解质微胶囊的药物缓释及其血液相容性研究[D].杭州:浙江大学,2010
    [18] ROACH P,FARRAR D,PERRY C C.Interpretation of protein adsorption:surface-induced conformational changes[J].Journal of the American Chemical Society,2005,7(22):8168-8173
    [19] SERRO A P,DEGIAMPIETRO K,COLACO R,et al.Adsorption of albumin and sodium hyaluronate on UHMWPE:A QCM-D and AFM study[J].Colloids & Surfaces B:Biointerfaces,2010,8(1):1-7
    [20] STANKOVICH S, DIKIN D A, PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,5(7):1558-1565
    [21] JR W S H,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,0(6):1339
    [22] LI D, MULLER M B, GILJE S,et al.Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2008,3(2):101-105
    [23] LI M, HUANG X, WU C, et al.Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant[J].Journal of Materials Chemistry,2012,2(44):23477-23484
    [24] CHEN X, WANG X P, XU X.Effective contact angle for rough boundary[J].Physica D:Nonlinear Phenomena, 2013,2(1):54-64
    [25] 王磊, 黄松, 黄丹曦,等.QCM-D研究BSA在不同改性PVDF超滤膜表面的吸附行为[J].哈尔滨工业大学学报,2016,8(8):78-83
    [26] CHANG X J,BOUCHARD D C.Multiwalled carbon nanotube deposition on model environmental surfaces[J].Environmental Science & Technology,2014,7(18):10372-10380
    [27] WANG L, MIAO R, WANG X, et al.Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: Characterization from microforces[J].Environmental Science & Technology,2013,7(8):3708-3714
    [28] CHANG X, BOUCHARD D C.Multiwalled carbon nanotube deposition on model environmental surfaces[J].Environmental Science & Technology,2013,7(18):10372-10380
    [29] WHATE G F, RUSSELL N J, TIDSWELL E C.Bacterial scission of ether bonds[J].Microbiological Reviews,1996,0(1):216-232
    [30] MENGER F M, CHLEBOWSKI M E.Is the ether group hydrophilic or hydrophobic?[J].Langmuir,2005,1(7):2689-2695
  • 加载中
计量
  • 文章访问数:  3227
  • HTML全文浏览数:  2810
  • PDF下载数:  588
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-02-08

蛋白类污染物在PVDF/GO杂化膜表面的吸附特性

  • 1. 西安建筑科技大学环境与市政工程学院,陕西省膜分离重点实验室,西安710055
  • 2. 河北地质大学水资源与环境学院,河北省水资源可持续利用与开发重点实验室,石家庄050031
基金项目:

陕西省重点科技创新团队计划(2017KCT-19-01)

陕西省重点产业链(群)项目(2017ZDCXL-GY-07-03)

摘要: 为从微观层面探讨蛋白质在膜表面的污染特性,采用改性Hummers法制备出具有“二维结构”的氧化石墨烯(GO),制得不同GO添加量的改性膜,通过自制的镀膜芯片,结合耗散型石英晶体微天平(QCM-D)等研究了牛血清蛋白(BSA)对改性膜污染的动态过程。结果表明:GO表面含有大量的亲水性官能团,其添加量不同,改性膜的接触角呈现不同程度的降低,且改性膜的亲水性越高,BSA在膜面的吸附速率和饱和吸附量相对越低。吸附过程中污染物在改性膜面的吸附累积经历了2个阶段,吸附初始阶段BSA在膜面快速累积,污染层的黏弹性较小;吸附过程中GO改性膜表面的亲水性官能团促使水分子不断地渗透到污染层中,改变吸附层的构象,导致其黏弹性显著增大,使改性膜的抗污染性能得到有效提高。

English Abstract

参考文献 (30)

目录

/

返回文章
返回