Fenton联合微波/超声波预处理凤眼莲和甘蔗渣及其酶解产糖工艺

张超奇, 张丽苑, 周文兵, 冯伟, 肖凯, 杨庆. Fenton联合微波/超声波预处理凤眼莲和甘蔗渣及其酶解产糖工艺[J]. 环境工程学报, 2018, 12(1): 242-249. doi: 10.12030/j.cjee.201705171
引用本文: 张超奇, 张丽苑, 周文兵, 冯伟, 肖凯, 杨庆. Fenton联合微波/超声波预处理凤眼莲和甘蔗渣及其酶解产糖工艺[J]. 环境工程学报, 2018, 12(1): 242-249. doi: 10.12030/j.cjee.201705171
ZHANG Chaoqi, ZHANG Liyuan, ZHOU Wenbing, FENG Wei, XIAO Kai, YANG Qing. Fenton combined with microwave/ultrasonic pretreatment of Eichhornia crassipes and sugarcane bagasse and their sugar production by enzymatic hydrolysis[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 242-249. doi: 10.12030/j.cjee.201705171
Citation: ZHANG Chaoqi, ZHANG Liyuan, ZHOU Wenbing, FENG Wei, XIAO Kai, YANG Qing. Fenton combined with microwave/ultrasonic pretreatment of Eichhornia crassipes and sugarcane bagasse and their sugar production by enzymatic hydrolysis[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 242-249. doi: 10.12030/j.cjee.201705171

Fenton联合微波/超声波预处理凤眼莲和甘蔗渣及其酶解产糖工艺

  • 基金项目:

    中央高校基本科研业务费专项(2662017JC018,2015BQ013)

    国家重点研发计划(2017YFD0800804-01)

    淡水生态与生物技术国家重点实验室开放课题(2016FB19)

Fenton combined with microwave/ultrasonic pretreatment of Eichhornia crassipes and sugarcane bagasse and their sugar production by enzymatic hydrolysis

  • Fund Project:
  • 摘要: 选取凤眼莲和甘蔗渣为代表性木质纤维素,以Fenton联合微波/超声波的化学-物理方法,对2种生物质进行预处理,并进行基质化学组分和基质特性、酶解产糖特性及其相互关系研究。对凤眼莲来说,最佳的Fenton-微波预处理为420 W 微波预处理3 min+Fenton预处理,预处理后基质的72 h酶解还原糖产率为33.18%;最佳的Fenton-超声波预处理是360 W超声波预处理40 min+Fenton预处理,预处理后基质的72 h酶解还原糖产率为32.61%。甘蔗渣最佳预处理条件分别为:420 W微波预处理3 min+Fenton预处理和480 W超声波预处理50 min+Fenton预处理,预处理后基质的72 h酶解还原糖产率分别为26.47%和24.05%。预处理后样品的保水值相比原料均有提高,纤维素和半纤维素的含量之和也有提高,两者与生物质样品的预处理强度及72 h酶解还原糖产率呈正相关,但预处理前后生物质的结晶度指数与72 h酶解还原糖产率并无明显相关。
  • 加载中
  • [1] 李晓西.世界能源新形势及我们的战略[J].价格理论与实践,2013(8):9-12
    [2] 刘洪斌.燃料乙醇非粮化:我国发展纤维乙醇的挑战与对策[J].生物加工过程,2008,6(1):7-11
    [3] HERBERT G M J, KRISHNAN A U.Quantifying environmental performance of biomass energy[J].Renewable & Sustainable Energy Reviews,2016,9:292-308
    [4] CAO X, ZHONG L, PENG X, et al.Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles[J].Bioresource Technology,2014,5(4):21-27
    [5] HENDRIKS A, ZEEMAN G.Pretreatments to enhance the digestibility of lignocellulosic biomass[J].Bioresource Technology,2009,0(1):10-18
    [6] 罗影龄,薛智权,易炜林,等.离子液体预处理生物质提高糖化产率[J].应用化学,2014,1(1):54-60
    [7] 周文兵,谭良峰,刘大会,等.凤眼莲及其资源化利用研究进展[J].华中农业大学学报,2005,24(4):423-428
    [8] 高星超,盛家荣,赵星华.甘蔗渣的研究进展[J].广西师范学院学报(自然科学版),2007,4(4):100-105
    [9] 梁杰珍,陈小鹏,王琳琳,等.蔗渣(髓)水解制备生物乙醇的研究进展[J].广西科学,2015,2(1):71-77
    [10] JAIN P,VIGNESHWARAN N.Effect of Fenton’s pretreatment on cotton cellulosic substrates to enhance its enzymatic hydrolysis response[J].Bioresource Technology,2012,3(1):219-226
    [11] MAMAEVA A, TAHMASEBI A, TIAN L, et al.Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil[J].Bioresource Technology,2016,1:382-389
    [12] LI W, LIU Q, MA Q, et al.A two-stage pretreatment process using dilute hydrochloric acid followed by Fenton oxidation to improve sugar recovery from corn stover[J].Bioresource Technology,2016,9:753-756
    [13] ZHANG T, ZHU M J.Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction[J].Bioresource Technology,2016,4:769-777
    [14] ELGHARBAWY A A, ALAM M Z, MONIRUZZAMAN M, et al.Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass[J].Biochemical Engineering Journal,2016,9:252-267
    [15] LIN L,YAN R,LIU Y,et al.In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin[J].Bioresource Technology,2010,1(21):8217-8223
    [16] 王林风,程远超.硝酸乙醇法测定纤维素含量[J].化学研究,2011,2(4):52-55
    [17] 张红漫,郑荣平,陈敬文,等.NREL法测定木质纤维素原料组分的含量[J].分析试验室,2010,9(11):15-18
    [18] 陈杨梅,万金泉,马邕文,等.湿压榨过程对植物纤维性能的影响[J].造纸科学与技术,2015,4(2):22-25
    [19] 林国良,刘敏毅,陈庆华.桐壳纤维预处理及可及度的表征[J].福建工程学院学报,2016,4(4):356-361
    [20] 张华锋.纤维素酶研究进展[J].现代农业科学,2009,6(6):25-26
    [21] 田翔,乔治军,王君杰.糜子中还原糖含量测定方法的对比研究[J].天津农业科学,2015,1(10):7-10
    [22] SILVERSTEIN R A, CHEN Y, SHARMA-SHIVAPPA R R, et al.A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J].Bioresource Technology,2007,8(16):3000-3011
    [23] GABHANE J, WILLIAM S P, VAIDYA A N, et al.Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose[J].Waste Management,2015,0:92-99
    [24] SCALA F, CHIRONE R.An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels[J].Biomass & Bioenergy,2008,2(3):252-266
    [25] 李莉,姜涛,周文兵,等.3种化学预处理下水葫芦和甘蔗渣的酶解产糖[J].华中农业大学学报,2015,4(4):66-72
  • 加载中
计量
  • 文章访问数:  1810
  • HTML全文浏览数:  1546
  • PDF下载数:  225
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

Fenton联合微波/超声波预处理凤眼莲和甘蔗渣及其酶解产糖工艺

  • 1. 华中农业大学资源与环境学院生态与环境工程研究室,武汉430070
  • 2. 生猪健康养殖湖北省协同创新中心,武汉430070
基金项目:

中央高校基本科研业务费专项(2662017JC018,2015BQ013)

国家重点研发计划(2017YFD0800804-01)

淡水生态与生物技术国家重点实验室开放课题(2016FB19)

摘要: 选取凤眼莲和甘蔗渣为代表性木质纤维素,以Fenton联合微波/超声波的化学-物理方法,对2种生物质进行预处理,并进行基质化学组分和基质特性、酶解产糖特性及其相互关系研究。对凤眼莲来说,最佳的Fenton-微波预处理为420 W 微波预处理3 min+Fenton预处理,预处理后基质的72 h酶解还原糖产率为33.18%;最佳的Fenton-超声波预处理是360 W超声波预处理40 min+Fenton预处理,预处理后基质的72 h酶解还原糖产率为32.61%。甘蔗渣最佳预处理条件分别为:420 W微波预处理3 min+Fenton预处理和480 W超声波预处理50 min+Fenton预处理,预处理后基质的72 h酶解还原糖产率分别为26.47%和24.05%。预处理后样品的保水值相比原料均有提高,纤维素和半纤维素的含量之和也有提高,两者与生物质样品的预处理强度及72 h酶解还原糖产率呈正相关,但预处理前后生物质的结晶度指数与72 h酶解还原糖产率并无明显相关。

English Abstract

参考文献 (25)

目录

/

返回文章
返回