干湿循环对Pb污染土固化体力学和浸出特性的影响

赵三青. 干湿循环对Pb污染土固化体力学和浸出特性的影响[J]. 环境工程学报, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110
引用本文: 赵三青. 干湿循环对Pb污染土固化体力学和浸出特性的影响[J]. 环境工程学报, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110
ZHAO Sanqing. Effect of wetting-drying cycles on mechanical and leaching properties of solidified lead-contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110
Citation: ZHAO Sanqing. Effect of wetting-drying cycles on mechanical and leaching properties of solidified lead-contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110

干湿循环对Pb污染土固化体力学和浸出特性的影响

  • 基金项目:

    武昌工学院教学研究项目(2015KYZ03)

Effect of wetting-drying cycles on mechanical and leaching properties of solidified lead-contaminated soils

  • Fund Project:
  • 摘要: 为研究干湿循环作用对Pb污染土固化体力学和浸出特性的影响规律,采用普通硅酸盐水泥(OPC)和磷酸镁水泥(MPC)2种固化剂对Pb污染土进行固化/稳定化处理。基于无侧限抗压强度实验、渗透实验和浸出实验,探讨干湿循环作用对Pb污染土固化体力学和浸出特性的影响规律,并结合压汞实验分析干湿循环作用对Pb污染土固化体力学和浸出特性影响的微观机制。结果表明:干湿循环作用均会降低OPC和MPC固化体的力学特性,MPC固化体耐久性要优于OPC固化体;通过浸出实验发现,OPC和MPC固化体浸出浓度均随干湿循环次数的增加而增加,当干湿循环次数大于5次时,OPC固化体浸出浓度高于浸出安全标准,而MPC固化体的浸出浓度均低于浸出安全标准;通过压汞实验发现,干湿循环作用破坏了固化土的结构完整性,增大了固化体中大孔隙(孔径>1 μm)体积。这是导致Pb污染土力学特性降低的根本原因,而固稳机制的不同是干湿循环作用下OPC和MPC固化体浸出浓度差异的本质原因。
  • 加载中
  • [1] 杜延军,金飞,刘松玉,等.重金属工业污染场地固化/稳定处理研究进展[J].岩土力学,2011,2(1):116-124
    [2] 陈蕾, 刘松玉, 杜延军,等.水泥固化重金属铅污染土的强度特性研究[J].岩土工程学报,2010,2(12):1898-1903
    [3] 张亭亭,李江山,王平,等.磷酸镁水泥固化铅污染土的应力-应变特性研究[J].岩土力学,2016,7(增刊1):215-224
    [4] 陈蕾, 杜延军, 刘松玉,等.水泥固化铅污染土的基本应力-应变特性研究[J].岩土力学,2011,2(3):715-721
    [5] 魏明俐,杜延军,张帆.水泥固化/稳定锌污染土的强度和变形特性试验研究[J].岩土力学,2011,32(S2):306-312
    [6] DU Y J, WEI M L, REDDY K R, et al.Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil[J].Journal Hazard Materials,2014,1:131-140
    [7] LI J S, XUE Q, WANG P, et al.Comparison of solidification/stabilization of lead contaminated soil between magnesia-phosphate cement and ordinary portland cement under the same dosage[J].Environmental Progress & Sustainable Energy,2016,5(1):88-94
    [8] 查甫生,刘晶晶,许龙,等.水泥固化重金属污染土干湿循环特性试验研究[J].岩土工程学报,2013,35(7):1246-1252
    [9] 曹智国,章定文,刘松玉.固化铅污染土的干湿循环耐久性试验研究[J].岩土力学,2011,34(12):3485-3490
    [10] 廖晓勇, 崇忠义, 阎秀兰, 等.城市工业污染场地:中国环境修复领域的新课题[J].环境科学,2011,2(3):784-794
    [11] 张亭亭,李江山,王平,等.磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J].岩土力学,2016,7(S2):279-286
    [12] BOARDMAN D J.Lime stabilization:Clay-metallime in teractions[D].Leice Stershire, UK:Loughboroug University, 1999
    [13] BUJ I, TORRAS J, CASELLAS D, et al.Effect of heavy metals and water content on the strength of magnesium phosphate cements[J].Journal of Hazardous Materials,2009,0(1):345-350
    [14] American Society for Testing and Materials.Standard test method for wetting and drying test of solid wastes:ASTM D4843-88[S].Philadephta:ASTM Press, 1988
    [15] 中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123-1999[S].北京,1999
    [16] American Society for Test and Materials.Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permameter:ASTM D5084-03[S].Philadelphia:ASTM Publisher, 2003
    [17] Office of Solid Waste and Emergency Response, U.S.Environmental Protection Agency.Test methods for evaluation of solid wastes, physical chemical methods:Toxicity characteristic leaching procedure (method 1311)[R].Washington D C:U.S.EPA,1992
    [18] YANG J H, SHIN J M, LEE C H, et al.Stabilization of Cs/Re trapping filters using magnesium phosphate ceramics[J].Journal of Radioanalytical and Nuclear Chemistry,2013,5(1):211-219
    [19] Wastewater Technology Centre.Proposed evaluation protocol for cement-based solidified wastes[R].Canada:Environment Canada,1991
    [20] 中华人民共和国环境保护部.危险废弃物鉴别标准浸出毒性鉴别:GB/T 5085.3-2007[S].北京,2007
    [21] BENTUR A, BERGER R L, LAWRENCE F V, et al.Creep and drying shrinkage of calcium silicate pastes III.A hypothesis of irreversible strains[J].Cement and Concrete Research,1979,9(1):83-95
    [22] BASTA N T, MCGOWEN S L.Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J].Environmental Pollution,2004,7(1):73-82
    [23] WANG A, ZHANG J, LI J, et al.Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics[J].Materials Science and Engineering:C,2013,3(5):2508-2512
    [24] HORPIBULSUK S, RACHAN R, RAKSACHON Y.Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J].Soils and Foundations,2009,9(1):85-98
  • 加载中
计量
  • 文章访问数:  2111
  • HTML全文浏览数:  1871
  • PDF下载数:  374
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14
赵三青. 干湿循环对Pb污染土固化体力学和浸出特性的影响[J]. 环境工程学报, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110
引用本文: 赵三青. 干湿循环对Pb污染土固化体力学和浸出特性的影响[J]. 环境工程学报, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110
ZHAO Sanqing. Effect of wetting-drying cycles on mechanical and leaching properties of solidified lead-contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110
Citation: ZHAO Sanqing. Effect of wetting-drying cycles on mechanical and leaching properties of solidified lead-contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 220-226. doi: 10.12030/j.cjee.201703110

干湿循环对Pb污染土固化体力学和浸出特性的影响

  • 1. 武昌工学院土木工程学院,武汉 430065
基金项目:

武昌工学院教学研究项目(2015KYZ03)

摘要: 为研究干湿循环作用对Pb污染土固化体力学和浸出特性的影响规律,采用普通硅酸盐水泥(OPC)和磷酸镁水泥(MPC)2种固化剂对Pb污染土进行固化/稳定化处理。基于无侧限抗压强度实验、渗透实验和浸出实验,探讨干湿循环作用对Pb污染土固化体力学和浸出特性的影响规律,并结合压汞实验分析干湿循环作用对Pb污染土固化体力学和浸出特性影响的微观机制。结果表明:干湿循环作用均会降低OPC和MPC固化体的力学特性,MPC固化体耐久性要优于OPC固化体;通过浸出实验发现,OPC和MPC固化体浸出浓度均随干湿循环次数的增加而增加,当干湿循环次数大于5次时,OPC固化体浸出浓度高于浸出安全标准,而MPC固化体的浸出浓度均低于浸出安全标准;通过压汞实验发现,干湿循环作用破坏了固化土的结构完整性,增大了固化体中大孔隙(孔径>1 μm)体积。这是导致Pb污染土力学特性降低的根本原因,而固稳机制的不同是干湿循环作用下OPC和MPC固化体浸出浓度差异的本质原因。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回