碳纳米管对水中多氯联苯的吸附动力学

曹秀芹, 程琳, 李志强. 碳纳米管对水中多氯联苯的吸附动力学[J]. 环境工程学报, 2017, 11(9): 5041-5048. doi: 10.12030/j.cjee.201702134
引用本文: 曹秀芹, 程琳, 李志强. 碳纳米管对水中多氯联苯的吸附动力学[J]. 环境工程学报, 2017, 11(9): 5041-5048. doi: 10.12030/j.cjee.201702134
CAO Xiuqin, CHENG Lin, LI Zhiqiang. Adsorption kinetics of carbon nanotubes on polychlorinated biphenyls in aqueous solution[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5041-5048. doi: 10.12030/j.cjee.201702134
Citation: CAO Xiuqin, CHENG Lin, LI Zhiqiang. Adsorption kinetics of carbon nanotubes on polychlorinated biphenyls in aqueous solution[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5041-5048. doi: 10.12030/j.cjee.201702134

碳纳米管对水中多氯联苯的吸附动力学

  • 基金项目:

    北京市教委(北京市自然科学基金)科技重点项目(KZ201310016017)

  • 中图分类号: X703

Adsorption kinetics of carbon nanotubes on polychlorinated biphenyls in aqueous solution

  • Fund Project:
  • 摘要: 通过静态吸附实验研究了碳纳米管(CNTs)对水中多氯联苯(PCBs)的吸附动力学特性,包括1种单壁碳纳米管(SWCNTs)和3种多壁碳纳米管(MWCNTs),并对4种CNTs的物理特征及孔径分布进行了分析。结果表明,SWCNTs的比表面积和总孔容最大,分别为228.210 m2·g-1和1.515 4 cm3·g-1。CNTs对PCBs的吸附速率很快,40 min吸附量可达到平衡时的90%以上,80 min左右达到吸附平衡,且SWCNTs的吸附能力远大于MWCNTs。运用拟一级和拟二级动力学模型对实验数据进行拟合,表明拟二级模型更适合描述CNTs对PCBs的吸附过程。
  • 加载中
  • [1] 余刚, 牛军峰, 黄俊. 持久性有机污染物:新的全球性环境问题[M]. 北京:科学出版社, 2005
    [2] 臧文超, 王琪. 中国持久性有机污染物环境管理[M]. 北京:化学工业出版社, 2013
    [3] 何秋生, 张桂香, 闫雨龙,等. 持久性有机物污染及控制[M]. 北京:化学工业出版社, 2015
    [4] 臧文超, 黄启飞. 重点区域持久性有机污染物污染现状及其管理对策[M]. 北京:化学工业出版社, 2014
    [5] 王冬. 多氯联苯(PCBs)的环境生态毒性研究[D]. 杭州:浙江大学, 2006
    [6] VATER S T, VELAZQUEZ S F, COGLIANO V J. A case study of cancer data set combinations for PCBs[J]. Regulatory Toxicology & Pharmacology, 1995, 22(1):2-10
    [7] SAFE S H. Polychlorinated biphenyls (PCBs):Environmental impact, biochemical and toxic responses, and implications for risk assessment[J]. Critical Reviews in Toxicology, 1994, 24(2):87-149
    [8] 曹秀芹, 程琳, 吕小凡. 城市污水中多氯联苯的存在现状及对比分析[J]. 科学技术与工程, 2017, 17(7):128-132
    [9] 谢武明, 胡勇有, 刘焕彬, 等. 城市污水中PCBs的分析及其QA/QC研究[J]. 中国环境监测, 2005, 21(3):35-39
    [10] 刘俊建. 典型持久性有机污染物在城市污水处理过程中的迁移转化规律研究[D]. 西安:西安建筑科技大学, 2011
    [11] BERGQVIST P A, AUGULYT L, JURJONIENE V. PAH and PCB removal efficiencies in Umeå(Sweden) and Šiauliai(Lithuania) municipal wastewater treatment plants[J]. Water, Air, and Soil Pollution, 2006, 175(1/2/3/4):291-303
    [12] BLANCHARD M, TEIL M J, OLLIVON D, et al. Origin and distribution of polyaromatic hydrocarbons and polychlorobiphenyls in urban effluents to wastewater treatment plants of the Paris area(France)[J]. Water Research, 2001, 35(15):3679-3687
    [13] 孙明礼, 成荣明, 徐学诚,等. 碳纳米管对酚类物质的吸附研究[J]. 东北师大学报(自然科学版), 2004, 36(4):71-75
    [14] 陈光才. 碳纳米管对污染物的吸附[M]. 北京:化学工业出版社, 2013
    [15] 张海波. 粉末活性炭对水中PCBs的吸附性能及主要影响因素研究[D]. 哈尔滨:哈尔滨工业大学, 2011
    [16] DENG S, ZHANG Q, NIE Y, et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes[J]. Environmental Pollution, 2012, 168(5):138-144
    [17] OLESZCZUK P. Sorption of phenanthrene by sewage sludge during composting in relation to potentially bioavailable contaminant content[J]. Journal of Hazardous Materials, 2009, 161(2/3):1330-1337
    [18] PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2009, 42(24):9005-9013
    [19] HAWKER D W, CONNELL D W. Octanol-water partition coefficients of polychlorinated biphenyl congeners[J]. Environmental Science & Technology, 1988, 22(4):382-387
    [20] YANG K, WANG X, ZHU L, et al. Competitive sorption of pyrene, phenanthrene, and naphthalene on multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2006, 40(18):5804-5810
    [21] LU C, SU F. Adsorption of natural organic matter by carbon nanotubes[J]. Separation & Purification Technology, 2007, 58(1):113-121
    [22] HYUNG H, KIM J H. Natural organic matter(NOM) adsorption to multi-walled carbon nanotubes:Effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12):4416-4421
    [23] CHANG M Y, JUANG R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay[J]. Journal of Colloid & Interface Science, 2004, 278(1):18-25
    [24] OFOMAJA A E, NAIDOO E B, Modise S J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder[J]. Industrial & Engineering Chemistry Research, 2010, 49(6):2562-2572
  • 加载中
计量
  • 文章访问数:  1838
  • HTML全文浏览数:  1481
  • PDF下载数:  488
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-06
  • 刊出日期:  2017-08-26

碳纳米管对水中多氯联苯的吸附动力学

  • 1. 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室, 北京 100044
基金项目:

北京市教委(北京市自然科学基金)科技重点项目(KZ201310016017)

摘要: 通过静态吸附实验研究了碳纳米管(CNTs)对水中多氯联苯(PCBs)的吸附动力学特性,包括1种单壁碳纳米管(SWCNTs)和3种多壁碳纳米管(MWCNTs),并对4种CNTs的物理特征及孔径分布进行了分析。结果表明,SWCNTs的比表面积和总孔容最大,分别为228.210 m2·g-1和1.515 4 cm3·g-1。CNTs对PCBs的吸附速率很快,40 min吸附量可达到平衡时的90%以上,80 min左右达到吸附平衡,且SWCNTs的吸附能力远大于MWCNTs。运用拟一级和拟二级动力学模型对实验数据进行拟合,表明拟二级模型更适合描述CNTs对PCBs的吸附过程。

English Abstract

参考文献 (24)

目录

/

返回文章
返回