Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力

俞向东, 周跃菊, 杨盛春. 有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力[J]. 环境工程学报, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146
引用本文: 俞向东, 周跃菊, 杨盛春. 有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力[J]. 环境工程学报, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146
YU Xiangdong, ZHOU Yueju, YANG Shengchun. Preparation and adsorption capacity of oxytetracycline hydrochloride by nano titania loaded organic bentonite[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146
Citation: YU Xiangdong, ZHOU Yueju, YANG Shengchun. Preparation and adsorption capacity of oxytetracycline hydrochloride by nano titania loaded organic bentonite[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146

有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力

  • 基金项目:

    云南省教育厅科学研究基金项目(2014Y399)

  • 中图分类号: X783.3

Preparation and adsorption capacity of oxytetracycline hydrochloride by nano titania loaded organic bentonite

  • Fund Project:
  • 摘要: 以钛酸丁酯和有机膨润土为原料,采用溶胶凝胶法制备了有机膨润土负载纳米TiO2吸附剂。通过XRD、BET、SEM等方法对吸附剂进行表征。结果表明,纳米TiO2已负载在有机膨润土上,有机膨润土负载纳米TiO2材料的层间距发生了明显变化,且其比表面积增加。同时对影响吸附盐酸土霉素的因素进行了考察,吸附剂最佳制备条件为煅烧温度300℃,煅烧时间4 h,TiO2含量80%,在pH=6,盐酸土霉素溶液浓度为25 mg·L-1,吸附时间为5 h时,对盐酸土霉素的吸附率可达97.3%。
  • 重金属作为环境重点监控污染物,其来源广、难去除、易富集,对动物和人体具有一定毒性。它广泛存在于各种环境介质中,具有持久性、致癌性、生物富集和生物放大等特点,极易对生态环境和人体健康造成不可逆损害[1-3]。水体和土壤重金属污染已引起广泛关注。进入水体的重金属大部分被悬浮物吸附[4],当悬浮物负荷量超过其搬用能力时,将沉降、蓄积于沉积物中[5]。在土壤中,重金属不断积累,当超过土壤自净能力时,将会导致土壤微生物活性、组成、结构和功能等发生改变[6]。因此,研究水体沉积物和土壤重金属含量、分布特征,进而准确评估其生态风险并探明其污染源,对污染控制与防治具有重要的理论和现实意义。

    剑湖流域包含了云南省剑川县主要饮用水水源地满贤林水库、玉华水库及格美江源头。流域内设有省级湿地自然保护区,是越冬候鸟的主要栖息地,是滇西北高原最具代表性的湿地类型之一[7]。近年来,剑川县大力发展种植业,剑湖流域内分布大量农田,同时,各种工业活动(如木雕)日益频繁,导致流域污染加剧。流域内重金属通过地表河流、地下径流、壤中流等形式汇入湖泊;剑湖是流域内重金属重要的汇,但其自身环境容量小、敏感性强、稳定性差、抵抗外界干扰能力差,生态环境极其脆弱,在人为活动的强烈干扰下,湖泊功能衰减,生态环境已逐渐恶化[8],已严重影响剑川县的经济和社会发展。Cd、Cr、Cu、Zn、Pb是土壤重金属污染的主要元素[9],Cu、V、Zn、V等是人体健康必需的微量元素,其在人体中含量过多或缺乏时,会对人体健康产生威胁[10-11]。此外,剑湖周边居民生活以煤炭为主要燃料,V是煤炭燃烧产生的主要重金属污染物[12]

    本研究选取剑湖流域为研究区,通过测定流域土壤及河流与湖泊沉积物中Cd、Cr、Cu、Zn、Pb和V 等6种重金属含量,分析其空间分布特征,进行潜在生态风险评价,并探明其污染来源,为剑湖流域重金属污染防治提供基础数据和科学依据。

    剑湖流域(26°28′N,99°55′E)位于青藏高原与云贵高原交界处的横断山脉中段东侧,地貌类型多样,结构复杂,主要地貌类型包括山地、河谷和盆地[13]。流域属澜沧江流域漾濞江水系,有永丰河、金龙河、格美江和狮河等主要河流汇入湖中,剑湖出水口进入黑惠江后流入漾濞江,最终进入澜沧江[13]。剑湖流域总面积为883 km2,土壤类型复杂多样,共有红壤、红棕壤、紫色土、暗棕壤、黄棕壤、高山草甸土、亚棕色针叶林土、冲积土、沼泽土等多个土类。但对剑湖影响较大的为周边海拔2500 m以下汇水面内的土壤类型,主要为铁铝土、初育土、潮湿土的3个土纲,冲积土、红壤、水稻土、沼泽土的4个土类,潜育型水稻土、红壤、山地红壤、暗色冲积土、暗红壤、泥炭沼泽土的6个亚类[14]

    据研究表明,对剑湖有影响的主要为海拔2500 m以下区域[14]。周边平原对剑湖影响强烈,平原区用地类型丰富,且附近居民地较多,人口密集。而剑湖流域边缘区域,人口较少且主要为林地(图1A),用地类型单一,故本研究选择剑湖周边平原为主要布点区(图1C),边缘区域为辅助布点区。

    图 1  2018年剑湖流域土地利用现状分布图(A)、剑湖流域总布点图(B)及平原区布点图(C)
    Figure 1.  Distribution of land types in Jianhu basin in 2018 (A), general sampling sites in Jianhu basin (B), and typical sampling sites in plains (C)

    此外,依据剑湖流域综合状况,按照典型取样方式,使用ArcGIS 10.2软件,以地理空间数据云2018年3月15日ANDSAT8-OI影像为底图,在剑湖流域范围内布设72个采样点(图1B),于2018年6月完成研究区样品采集。采样点来源如表1所示。湖泊、河流使用定深泥炭钻(Eijkelkamp0423SA,荷兰)采集表层10 cm沉积物,陆地使用鹰嘴锄、不锈钢勺挖取表层10 cm土壤,每个采样点随机采集5个平行样,搅拌均匀后自然风干、研磨、过筛(100目)、备用。

    表 1  采样点来源
    Table 1.  Source of sampling points
    采样点来源Sources of sampling points样点号Sampling point number
    河流(湖泊及水库)47、1、5、14、16、20、23、22、25、27、28、31、32、35、42、41、44、53、50、51、49、52、56、57、58、59、63、64、65、68、72
    工业用地及养殖场11、21、30、9、15、18、19、26、33、38、48、62、66
    居民地8、13、36、40、55、61
    农地2、6、7、12、17、24、29、37、39、43、45、54、60、67、69、71
    森林3、4、10、34、46、70
     | Show Table
    DownLoad: CSV

    重金属含量分析采用微波辅助消解—电感耦合等离子体原子发射光谱法。具体步骤为:万分之一天平称取0.13–0.15 g经预处理的土样于微波消解管中,加入5 mL硝酸、5 mL盐酸、5 mL氢氟酸,置于电热板上120℃、30 min,再用微波消解仪(Multiwave PRO,Austria)消解,其温度控制程序见图2。之后再次于电热板上加热(120℃,4 h),前2 h静置,后2 h每隔0.5 h摇晃一次冲下管壁附着固体,待消解液剩余1 mL后取下消解管,转移至50 mL比色管中,用1%硝酸定容至刻度,充分混匀,过滤(0.45 µm)备用。重金属含量采用电感耦合等离子体发射光谱仪(ICP-OES;ICPE-9820,Japan)测定。使用Excel 2010进行数据处理分析,利用Surfer 11空间插值功能,将经纬度及重金属含量数据导入软件,绘制剑湖流域重金属(Cd、Cr、V 、Cu、Pb、Zn)含量水平空间分布图。使用SPSS23.0对重金属含量数据进行Pearson相关性分析(双侧检验)和主成分分析。

    图 2  微波消解仪温度控制程序
    Figure 2.  Temperature control program of microwave digestion system

    单因子污染指数是最简单的环境质量评价方法之一,该方法是将测得重金属含量与其背景值对比,适用于单一因子污染特定区域的评价[15]。其公式为:Pi=Ci/SiPi为重金属元素i的单因子污染指数,Ci为样品中污染物i的实测含量(mg·kg−1),Si为污染物参比值(以云南省土壤背景值[16]为参考)(表2)。

    表 2  Pi的分级标准
    Table 2.  Grading standards of Pi
    污染水平Pollution level清洁Clean轻污染Light pollution中污染Medium pollution重污染Heavy pollution
    Pi Pi <1 1≤Pi <2 2≤Pi <3 Pi≥3
     | Show Table
    DownLoad: CSV

    环境中多种重金属并存,内梅罗指数法既可体现单因子重金属的污染程度,亦可反映多种重金属的综合污染程度,同时还兼顾了重金属浓度的平均水平和最大值,能较全面反映沉积物/土壤的重金属总体污染特征,是目前应用较多的一种评价方法[17]。其计算公式为:

    P=(¯Pi)2+(Pimax)22

    式中,P为重金属的综合污染指数,¯Pi为各金属单因子污染指数的平均值,Pimax为重金属单因子污染指数的最大值。按照P值,可将污染划分5个污染等级[17]表3)。

    表 3  内梅罗污染指数(P)及风险分级
    Table 3.  Nemerow Pollution Index (P) and the associated risk classification
    内梅罗污染指数(P)Nemerow Pollution Index等级标准Risk levels
    P ≤ 0.7 安全
    0.7 < P ≤ 1.0 警戒
    1.0 < P ≤ 2.0 轻度污染
    2.0 < P ≤ 3.0 中度污染
    P > 3.0 重度污染
     | Show Table
    DownLoad: CSV

    地累积指数法被广泛用于评价沉积物中重金属污染程度,后又被广泛用于土壤重金属的污染评价[18]。该方法通过利用土壤或沉积物中重金属含量与其地球化学背景值的关系,直观反映外源性重金属在区域土壤或沉积物中的富集程度[19]。通常分为 7个等级(表4),其计算公式为:

    Igeo=log2(Cn1.5×Bn)

    式中,Igeo为地累积指数;Cn为重金属元素n的实际含量;1.5为考虑到成岩作用引起背景值的变动而设定的常数,Bn为当地重金属元素n的背景值(选择云南省A层土壤元素算术平均值作为背景值)。

    表 4  地累积指数与污染程度分级
    Table 4.  Index of geoaccumulation and classification of pollution degrees
    Igeo级数Pollution degree污染程度Contamination level
    <0 0 无污染
    0—1 1 轻度
    1—2 2 偏中度
    2—3 3 中度
    3—4 4 偏重度
    4—5 5 重度
    5—6 6 严重
     | Show Table
    DownLoad: CSV

    由瑞典学者Hakanson提出的潜在生态风险评价法[20],可直观、便捷地评估污染元素对生态环境的潜在风险。该方法既可反映某种重金属在特定环境中的单一风险,亦可反映多种重金属的复合风险。此外,该方法以定量方式对潜在生态危害程度进行分类[21],因此应用广泛。具体计算公式[22]如下:

    Cif=CiCin
    Eir=Tir×Cif
    RI=mi=1Eir

    式中,Cif为单项污染系数,Ci为样品中污染物i的实测含量(mg·kg−1),Cin为污染物的参比值,Eir为污染物i的单项潜在生态风险指数,Tir为污染物的毒性系数,RI为综合潜在生态风险指数。

    由公式可知,Eir和RI分级与重金属元素种类有关。Hakanson潜在生态风险依据河流底泥中PCBs(多氯联苯)、Hg、Cd、Pb、As、Cr、Cu、Zn等8种污染物确定,本研究涉及Cd、Cr、V、Cu、Pb、Zn 6种重金属,故根据研究的重金属元素种类将潜在生态风险评价等级进行调整[23-24]。调整后的Cd、Cr、Cu、Pb、Zn重金属毒性系数Tir仍采用Hakanson系数取值,V使用徐争启等[25]的推荐值。使用云南省A层土壤重金属含量算术平均值作为评价计算过程的参比值[16]。重金属毒性系数和参比值见表5

    表 5  重金属毒性系数及参比值
    Table 5.  Heavy metals toxicity coefficients and reference values
    CdCrVCuPbZn
    毒性系数3022551
    参比值/(mg·kg-10.21865.215546.340.689.7
     | Show Table
    DownLoad: CSV

    Eri最低值上限为参评重金属中的最大毒性系数(30),其余级别上限依次加倍;RI分级标准的最低级由各重金属毒性系数之和取10位整数(30+5+2+5+2+1≈50),其余级别上限依次加倍[26],调整后潜在生态风险评价分级标准见表6

    表 6  潜在生态风险评价分级标准
    Table 6.  Grading standards of potential ecological risk evaluation
    风险程度Risk level轻微Slight中等Medium强High很强Extremely high
    Eir <30 30—60 60—120 >120
    RI <50 50—100 100—200 >200
     | Show Table
    DownLoad: CSV

    富集因子法是1974年Zoller等[27]为研究南极上空大气颗粒物中的元素是来源于地壳还是海洋而提出。通过选择满足一定条件的元素作为参比元素,样品中污染物的含量与参比元素含量的比值与背景区中二者含量比值的比率即为富集因子[28],常被用作判断污染物质来源途径,其计算公式为:

    EF=Cs/RbMs/Nb

    式中,EF为富集因子;Cs为样品中重金属s的实测值;Rb为样品中参比元素b的实测值;Ms为重金属元素s的背景值;Nb为参比元素b的背景值。

    富集因子法一般以Al或Fe作为参比元素,因为Fe在地壳中大量存在,且稳定性好、不易迁移[29]。采用云南省A层土壤元素含量算术平均值作为评价计算过程中的背景值。其中,EF值越大,表明富集程度越高。通常情况下,EF<1.5,表明重金属富集程度没有超过自然水平;EF>1.5,表明重金属富集程度超过自然水平,人为污染成为重金属的主要来源[30]

    剑湖流域重金属(Cd、Cr、V、Cu、Pb、Zn)含量如表7所示,各重金属含量均值表现为:Zn>V>Cr>Cu>Pb>Cd,与云南省土壤背景值[16](Zn:89.7 mg·kg−1;V:155 mg·kg−1;Cr:65.2 mg·kg−1;Cu:46.3 mg·kg−1;Pb:40.6 mg·kg−1;Cd:0.22 mg·kg−1)排序基本一致,浓度范围分别为:Cd 0.04–0.58 mg·kg−1,Cr 5.0–221 mg·kg−1,V 9.41–742 mg·kg−1,Cu 4.7–161 mg·kg−1,Pb 3.5–45.9 mg·kg−1,Zn 17.4–2152 mg·kg−1。Cd、Cr、Cu、V、Zn浓度均值均高于云南省土壤背景值(0.218、65.2、46.3、155、89.7 mg·kg−1)(表7),分别是背景值的1.02、1.25、1.02、1.05、1.40倍,说明此5种重金属在该研究区存在一定富集。

    表 7  重金属含量、变异系数及云南省土壤背景值
    Table 7.  Descriptive statistical analysis results of heavy metals
    元素Element最大值/(mg·kg−1)Maximum 最小值/(mg·kg−1)Minimum 平均值/(mg·kg−1)Average 标准差/(mg·kg−1)Standard deviation变异系数Variable coefficient云南省土壤背景值/(mg·kg−1)Background values in Yunnan soils
    Cd 0.58 0.04 0.22 0.12 52% 0.22
    Cr 221 5.0 81.5 45.4 56% 65.2
    V 742 9.41 163 105 64% 155
    Cu 161 4.7 47.1 22.6 48% 46.3
    Pb 45.9 3.5 21.9 8.9 41% 40.6
    Zn 2152 17.4 125 255 203% 89.7
      注:云南省土壤背景值使用云南省A层土壤元素算术平均值含量[16],mg·kg−1
     | Show Table
    DownLoad: CSV

    变异系数反映各样点重金属浓度的平均变异程度,变异系数>50%,表明重金属浓度空间分布不均匀,可能存在点源污染,有外源物质输入贡献[31]。Cu、Pb变异系数相对较低,分别为48%和41%;Cd、Cr和V变异系数分别为52%、56%和64%,为中等变异,表明人为因素对重金属积累具有一定影响;Zn变异系数为203%,为强变异(>100%),表明Zn浓度存在显著的空间差异性,对影响的敏感度高,受某些局部污染源的影响较明显。高重金属含量及较高的变异系数通常表明重金属积累易受人为因素影响,说明该区域Zn积累受外部人为因素影响最为强烈[32]

    剑湖流域Cd、Cr、V、Cu、Pb、Zn水平空间分布情况如图3所示。整体上,该流域受出入湖河流分布、农业、人为活动等综合影响,其土壤Cd、Cr、V、Cu、Pb、Zn水平空间分布呈现不同规律。其中,Cd、Cr、V、Cu含量总体均表现为东高西低,可能与流域中部多为居民地与农地,东部为离散农地,而流域中下部有剑湖,周围各种河流较多,人为扰动大,而西部多为森林,仅少量农地,人为干扰小有关。Pb在整个流域内分布较均匀,可能与其较低的含量有关(低于云南省土壤背景值;表7)。Zn除个别点含量较高外,其他分布较均匀,在流域中下部、东北部以北、东南部以东含量较高,其他区域含量较低。

    图 3  剑湖流域Cd、Cr、V、Cu、Pb、Zn水平空间分布
    Figure 3.  Horizontal distribution of Cd, Cr, V, Cu, Pb, Zn in Jianhu basin

    72个采样点中,Cd含量最高值为河流(27#采样点),可能源于附近汽车维修厂的汽车轮胎和润滑油,Cd是含锌添加剂的杂质成分[33],此外,刹车系统磨损也可导致Cd释放[34]。Cr、V含量最高值均出现在森林(70#采样点),一般而言,Cr、V含量主要受成土母质、土壤质地等因素影响[35-36],两种元素在该处含量高可能与区域成土母质、土壤质地等有关,具体原因有待进一步探究。Cu含量最高值出现在农地(69#采样点),可能与附近农地大量使用杀虫剂有关,研究表明杀虫剂是Cu污染的一个重要人为来源[37]。Pb含量最高值低于云南省土壤背景值,表明剑湖流域无明显Pb富集。Zn含量最高值出现在奶牛养殖场(38#采样点),Zn是动物机体必需的微量元素之一,在养殖过程中,为了让动物更好地生长繁殖,通常在饲料中加入大量Zn[38]

    流域各重金属单因子污染评价结果见表8。由表可见,Zn累积效应最为显著。均值表明,除Pb为清洁程度,其余5种重金属均呈轻污染。污染程度空间分布方面,大部分样点Cr呈轻污染,Cd、V、Cu、Pb、Zn为清洁程度。Cd、V、Cu、Pb、Zn表现为清洁的样点占比为分别为54.2%、52.8%、50%、94.4%、63.9%,轻污染占比分别为40.3%、41.7%、48.6%、5.6%、19.4%;Cr表现为清洁、轻污染和中污染的占比分别为40.3%、43.1%和15.3%。此外,Cr、V、Cu均有1个样点(70#、70#、69#)达到重污染程度。Zn单因子污染指数最大值与最小值相差较大,超过120倍,这与Zn的高变异系数结果一致。Cd、Pb无重污染样点。

    表 8  剑湖流域重金属单因子和综合污染指数
    Table 8.  Single factor and comprehensive pollution index of heavy metals in Jianhu basin
    CdCrVCuPbZn
    单因子污染指数Pi 最大值 2.68 3.39 4.80 3.48 1.14 24.0
    最小值 0.19 0.07 0.06 0.10 0.09 0.19
    平均值 1.02 1.25 1.05 1.02 0.54 1.40
    综合污染指数P 2.03 2.55 3.47 2.56 0.89 17.0
     | Show Table
    DownLoad: CSV

    依据公式,Cd、Cr、V、Cu、Pb、Zn综合污染指数分别为2.03、2.55、3.47、2.56、0.89、17.0, Cd、Cr、Cu为中度污染,V、Zn为重度污染,Pb处于警戒。剑湖是周边居民的重要生活水源地,不仅关系到居民饮水安全,亦制约该地区的经济发展和生态安全。土壤和沉积物重金属Pi均值表现为Zn>Cr>V>Cd>Cu>Pb。综上,剑湖流域Cd、Cr、V、Cu、Zn表现出不同程度污染,Pb污染处于警戒线,需引起关注。

    剑湖流域重金属地累积指数见表9,Cd、Cr、V、Cu、Pb、Zn地累积指数均值分别为−0.77、−0.54、−0.77、−0.72、−1.62、−0.84。参照表4Igeo等级与重金属污染程度划分法则,Zn在一个样点地累积指数高达4,达偏重度污染,6.9%(5个样点)呈偏中度污染,12.5%(9个样点)呈轻度污染,79.2%样点均呈无污染。其次,Cr、V、Cu均有1个样点表现为偏中度污染程度,并有31.9%(23个样点)、15.3%(11个样点)、9.7%(7个样点)表现出轻度污染,其余为无污染。Cd在14个样点表现出轻度污染程度,其余样点为无污染。Pb的地累积指数均<0,表明在剑湖流域土壤、河流与湖泊无Pb污染。综上,按地累积指数均值,剑湖流域土壤和沉积物中各重金属污染等级大小顺序为Cr>Cu>V>Cd>Zn>Pb。

    表 9  剑湖流域重金属地积累指数及污染等级
    Table 9.  Accumulation index and pollution grade of heavy metals in Jianhu basin
    CdCrVCuPbZn
    Igeo值 级数 Igeo 级数 Igeo 级数 Igeo 级数 Igeo 级数 Igeo 级数
    最大值 0.84 1 1.18 2 1.68 2 1.21 2 −0.41 0 4.00 4
    最小值 −2.94 0 −4.29 0 −4.63 0 −3.88 0 −4.12 0 −2.95 0
    均值 −0.77 0 −0.54 0 −0.77 0 −0.72 0 −1.62 0 −0.84 0
     | Show Table
    DownLoad: CSV

    剑湖流域重金属潜在生态风险评价结果如表10所示。结果表明,流域单项潜在生态风险指数均值顺序为:Cd>Cu>Pb>Cr>V>Zn,其值分别为:30.6、5.09、2.69、2.50、2.10、1.40。除Cd在部分采样点达到中等至强潜在生态风险外,其余5种重金属单项潜在生态风险的最大值均<30,属轻微潜在生态风险。72个采样点中Cd单项潜在生态风险>30占比高达45.8% ,其中有4个采样点(5#、27#、29#、38#)的单项潜在生态风险系数>60,呈强潜在生态风险。27#样点Cd单项潜在生态风险系数最高,与其含量结果一致(图3),可能源于附近汽车维修厂。整个流域Cd的潜在生态风险最高,这是由于Cd毒性最大,毒性系数最高。因此,剑湖流域需控制Cd污染源输入,防止其生态风险及危害加剧。其余重金属的单项潜在生态风险系数均较低,表明Cr、V、Cu、Pb、Zn流域生态环境危害较低。

    表 10  剑湖流域重金属潜在生态风险评价结果
    Table 10.  Potential ecological risk assessment results of heavy metals in Jianhu Basin
    重金属潜在生态风险指数(Eir)Potential ecological risk index of heavy metals综合指数(RI)Composite index
    CdCuCrPbVZn
    最大值80.317.46.785.669.5824.0144
    最小值5.860.510.150.430.120.197.26
    平均值30.65.092.502.692.101.4044.4
    贡献率a69%11.5%5.6%6.1%4.7%3.2%100%
      注:a单元素潜在生态风险指数值占综合生态风险指数值的百分比.
     | Show Table
    DownLoad: CSV

    根据综合潜在生态风险指数RI值(表10),72个采样点的重金属生态风险综合指数为7.26–144(均值44.4)。其中,轻微生态风险(RI<50)点位占比65.3%(47个点位),中等生态风险(50 ≤ RI < 100)点位占比31.9%(23个点位),强生态风险(100 ≤ RI < 200)点位占比2.8%(2个点位)。6种重金属中,Cd、Cu对流域重金属综合生态风险指数的贡献率最高,占综合指数RI的平均百分比为80.4%,其中Cd的贡献率高达69%,表明Cd、Cu是剑湖流域的主要重金属污染物,具有极强的生态风险性,需引起重视。

    表11可知,剑湖流域Cd、Cr、V、Cu、Pb、Zn平均富集因子系数分别为4.03、3.85、3.12、3.45、2.36、4.84,Zn平均富集因子系数最大,Pb平均富集因子系数最小。6种重金属平均富集系数均>1.5,说明均以人为因素的富集为主,人为污染输入是主要原因,其中Zn人为影响最严重,72.2%样点富集因子系数>1.5,其次为Cd、Cr、Cu和V,占比分别为87.5%、94.4%、100%、98.6%,Pb人为富集较轻,51.4%样点富集因子系数>1.5。剑湖流域Zn在38#采样点富集因子系数最高(74.2),由2.1可知,可能与该处位于奶牛养殖场有关。同时,Zn早在20 世纪90年代就被我国列入环境优先污染物,其人为污染来源广泛。

    表 11  剑湖流域富集因子系数
    Table 11.  Enrichment factor coefficient in Jianhu basin
    富集因子 Enrichment factor
    CdCrVCuPbZn
    最大值30.89.808.0524.912.874.2
    最小值0.441.060.921.600.180.64
    平均值4.033.853.123.452.364.84
     | Show Table
    DownLoad: CSV

    不同重金属的含量相关性可反映元素间的空间变化趋势,能在一定程度上反映元素的矿物来源、存在形式和污染状况等[39-40]。剑湖流域重金属含量的相关性矩阵分析结果见表12。结果表明,Cd、Cr、Cu、V等 4种元素两两间呈显著正相关,相关系数为0.427(Cd vs. Cu,P<0.01)–0.769(Cr vs. V,P<0.01),表明4种重金属具有相似来源;Pb、Zn呈显著正相关,相关系数为0.330(P<0.01),表明Pb、Zn有相似来源。

    表 12  剑湖流域重金属相关性分析
    Table 12.  Correlation analysis of heavy metals in Jianhu basin
    CdCrCuPbZnV
    Cd1
    Cr0.615**1
    Cu0.427**0.548**1
    Pb0.614**0.242*0.0961
    Zn0.2230.1800.0770.330**1
    V0.472**0.769**0.668**0.1220.308**1
      注:*P<0.05,相关性显著;**P<0.01,相关性显著。
     | Show Table
    DownLoad: CSV

    为进一步分析剑湖流域Cd、Cr、V、Cu、Pb、Zn 6种重金属的污染来源,采用主成分分析方法,过程中Bartlett球形度检验的相伴概率为0.000,小于显著性水平0.05,说明该数据适合做主成分分析[41],分析结果见表13。提取前2个主成分,可解释变量总方差的71.2%,表明这2个主成分(特征值:3.141+1.129=4.27个变量)基本可代表6个金属元素的完整信息。

    表 13  剑湖流域重金属主成分分析
    Table 13.  Principal component analysis of heavy metals in Jianhu basin
    因子载荷 Factor loading
    PC1PC2
    Cd0.8080.262
    Cr0.870−0.303
    Cu0.822−0.301
    Pb0.4580.780
    Zn0.3940.535
    V0.832−0.322
    特征值3.141.25
    累计贡献率52.4%73.2%
     | Show Table
    DownLoad: CSV

    第一主成分贡献率为52.4%,特征表现为因子变量在Cd、Cr、Cu、V元素上有较高载荷,分别为0.808、0.870、0.822、0.832,表明这些元素可能具有相同来源,该结果与相关性分析结果一致(表12)。V主要来源于矿产开发和化石燃料燃烧[42],剑湖流域采石和采煤较多,尤其是金龙河上游地区,采石、采煤频繁。采煤活动和煤炭运输产生的废气废物可导致煤矿区周边土壤出现Cd、Cu等重金属积累。此外,煤矸石长期受风蚀作用向周边土壤缓慢释放重金属,导致土壤重金属积累[43]。Cd是施用农药和化肥等农业活动的标志性元素[44],剑湖流域内存在大量农田,沉积物和土壤Cd积累同时受到工业污染和农业的影响。邓红艳[45]等对Cr污染的研究表明,磷肥是Cr污染的重要来源,剑湖流域受到农业活动过程中磷肥的污染。综合来看,第一主成分主要代表化石能源和农业污染源。

    第二成分贡献率为20.8%,主要表现在Zn、Pb上具有较高载荷,分别为0.535、0.780。由含量数据可知,Pb含量均值低于云南省土壤背景值(图3),且Pb污染程度和潜在生态风险均较低(表10),说明Pb为自然源,主要受背景值影响,反映自然环境的影响。Zn主要来源于生活污水[46],城市生活污水通过永丰河不断输入到剑湖,其他各入湖河流也流经大面积农村居民聚居地,汇集的生活污水通过地表或地下径流等形式流经整个流域。因此,第二主成分主要代表自然源和居民生活污染源。

    (1)剑湖流域72个采样点土壤与河流、湖泊沉积物中Cd、Cr、Cu、V和Zn含量均高于云南省土壤背景值。

    (2)土壤与河流、湖泊沉积物重金属水平空间分布各异:Cd、Cr、V、Cu表现为东高西低;Pb在整个流域内分布较均匀,Zn含量表现为除个别点含量较高外其他分布较均匀。6种金属水平空间变异系数均>40%,且Zn变异系数高达200%,属强变异,其他均为中等变异。

    (3)单因子污染指数和内梅罗综合污染指数表明Cd、Cr、Cu为中度污染,V、Zn为重度污染,Pb达到警戒线。

    (4)地累积指数结果表明,除Pb表现为无污染外,其余5种金属均有不同程度污染。

    (5)重金属潜在生态风险指数顺序为Cd>Cu>Pb>Cr>V>Zn;重金属综合潜在生态风险指数RI结果表明,剑湖流域Cd、Cu生态风险最高。

    (6)富集因子法结果表明,6种重金属均以人为富集为主。

    (7)主成分分析和相关性分析表明,V、Cd、Cu源于化石能源;Cd、Cr源于农业活动;Zn源于居民生活;Pb源于自然活动。

  • [1] 赵欢, 李姣, 关卫省. 液相法制备纳米TiO2的工艺及其光催化降解盐酸土霉素的研究[J]. 应用化工, 2012, 41(8):1354-1357
    [2] 刘小云, 舒为群. 水中抗生素污染现状及检测技术研究进展[J]. 中国卫生检验杂志, 2005, 15(8):1011-1014
    [3] 晁显玉, 曹红翠, 古小超. 抗生素类废水处理方法的研究概述[J]. 山西化工, 2015, 35(3):78-82
    [4] 史瑞明, 王峰, 杨玉萍. 抗生素废水处理现状与研究进展[J].山东化工, 2007, 36(11):10-14
    [5] LI S Z,LI X Y,WANG D Z. Membrane(RO-UF)fihrationfor antibiotic wastewater treatment and recoveryof ant-ibioticsl[J].Separation and Purification Teehnoogy, 2004, 34(13):109-114
    [6] 祁彦洁,刘菲. 地下水中抗生素污染检测分析研究进展[J].岩矿测试, 2014, 33(1):1-11
    [7] 刘佳, 隋铭皓, 朱春艳. 水环境中抗生素的污染现状及其去除方法研究进展[J]. 四川环境, 2011, 30(2):111-114
    [8] 李霞, 胡勤海, 陈菊芬, 等. 纳米TiO2/硅藻土光催化降解废水中二甲胺[J].环境工程学报, 2013, 7(8):3073-1029
    [9] SHI Q, JIANG C Y, WANG Y P, et al. Preparation and characterization of PVA-I complex doped mesoporous TiO2 by hydrothermal method[J]. Applied Surface Science,2013,273:769-755
    [10] 杨茜怡, 孙洋洋. Zn/Ti-ATPs的合成及其光催化降解盐酸四环素的研究[J]. 应用化工, 2014, 43(6):1025-1028
    [11] 赵雪辉, 蒋彩云, 王玉萍. PVA-I修饰介孔TiO2光催化剂对盐酸四环素的光降解[J].环境工程学报, 2014, 8(10):4060-4066
    [12] 杨召营, 李晓静. 纳米材料与技术在水处理中的应用[J]. 化工技术与开发, 2012, 41(1):23-25
    [13] 杨盛春, 贺洁, 何丽仙. 有机插层膨润土的制备及吸附性能研究[J]. 化工科技, 2014, 22(4):21-24
    [14] 黄丽华, 赵峰, 陈建民, 等. 纳米TiO2光催化降解直接耐晒蓝的研究[J]. 环境化学, 2003, 22(4):359-363
    [15] 李静谊, 斯琴高娃, 刘丽娜. TiO2/膨润土光催化降解有机污染物[J]. 物理化学学报, 2007, 23(1):16-20
  • 期刊类型引用(3)

    1. 林冰峰,陈志豪,杨芳俐,吴永红,唐次来. 锰铁氧体改性生物炭对四环素的吸附性能研究. 农业环境科学学报. 2023(07): 1585-1596 . 百度学术
    2. 王腾,路浩源,张梦飞,卜帅斌,任爽,盛莉,孟昭福. 氮-氟掺杂比例对TiO_2/膨润土复合材料吸附土霉素的影响. 农业环境科学学报. 2019(12): 2764-2771 . 百度学术
    3. 朱晓霞,郝瑞霞,范蓉锦,王丽沙,刘思远,万京京. 镧、氮共掺杂TiO_2提高污水厂尾水的可生化性. 净水技术. 2018(12): 91-97+120 . 百度学术

    其他类型引用(3)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.4 %DOWNLOAD: 1.4 %FULLTEXT: 84.2 %FULLTEXT: 84.2 %META: 14.3 %META: 14.3 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 90.3 %其他: 90.3 %Ashburn: 0.9 %Ashburn: 0.9 %Beijing: 0.9 %Beijing: 0.9 %Guangzhou Shi: 0.3 %Guangzhou Shi: 0.3 %Mountain View: 0.3 %Mountain View: 0.3 %Shijiazhuang: 0.6 %Shijiazhuang: 0.6 %Xingfeng: 0.6 %Xingfeng: 0.6 %XX: 2.3 %XX: 2.3 %Yuncheng: 0.3 %Yuncheng: 0.3 %内网IP: 0.6 %内网IP: 0.6 %北京: 0.9 %北京: 0.9 %北海: 0.3 %北海: 0.3 %济南: 0.3 %济南: 0.3 %深圳: 0.9 %深圳: 0.9 %郑州: 0.9 %郑州: 0.9 %其他AshburnBeijingGuangzhou ShiMountain ViewShijiazhuangXingfengXXYuncheng内网IP北京北海济南深圳郑州Highcharts.com
计量
  • 文章访问数:  1837
  • HTML全文浏览数:  1441
  • PDF下载数:  480
  • 施引文献:  6
出版历程
  • 收稿日期:  2017-01-17
  • 刊出日期:  2017-08-26
俞向东, 周跃菊, 杨盛春. 有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力[J]. 环境工程学报, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146
引用本文: 俞向东, 周跃菊, 杨盛春. 有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力[J]. 环境工程学报, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146
YU Xiangdong, ZHOU Yueju, YANG Shengchun. Preparation and adsorption capacity of oxytetracycline hydrochloride by nano titania loaded organic bentonite[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146
Citation: YU Xiangdong, ZHOU Yueju, YANG Shengchun. Preparation and adsorption capacity of oxytetracycline hydrochloride by nano titania loaded organic bentonite[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5035-5040. doi: 10.12030/j.cjee.201609146

有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力

  • 1. 大理市环境保护局, 大理 671000
  • 2. 大理大学药学与化学学院, 大理 671000
基金项目:

云南省教育厅科学研究基金项目(2014Y399)

摘要: 以钛酸丁酯和有机膨润土为原料,采用溶胶凝胶法制备了有机膨润土负载纳米TiO2吸附剂。通过XRD、BET、SEM等方法对吸附剂进行表征。结果表明,纳米TiO2已负载在有机膨润土上,有机膨润土负载纳米TiO2材料的层间距发生了明显变化,且其比表面积增加。同时对影响吸附盐酸土霉素的因素进行了考察,吸附剂最佳制备条件为煅烧温度300℃,煅烧时间4 h,TiO2含量80%,在pH=6,盐酸土霉素溶液浓度为25 mg·L-1,吸附时间为5 h时,对盐酸土霉素的吸附率可达97.3%。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回