有机膨润土负载纳米TiO2的制备及其对盐酸土霉素的吸附能力
Preparation and adsorption capacity of oxytetracycline hydrochloride by nano titania loaded organic bentonite
-
摘要: 以钛酸丁酯和有机膨润土为原料,采用溶胶凝胶法制备了有机膨润土负载纳米TiO2吸附剂。通过XRD、BET、SEM等方法对吸附剂进行表征。结果表明,纳米TiO2已负载在有机膨润土上,有机膨润土负载纳米TiO2材料的层间距发生了明显变化,且其比表面积增加。同时对影响吸附盐酸土霉素的因素进行了考察,吸附剂最佳制备条件为煅烧温度300℃,煅烧时间4 h,TiO2含量80%,在pH=6,盐酸土霉素溶液浓度为25 mg·L-1,吸附时间为5 h时,对盐酸土霉素的吸附率可达97.3%。Abstract: An novel nano titania loaded bentonite organic absorbent based on butyl titanate and organic bentonite was prepared by sol-gel method. The properties of absorbent were characterized by various experimental techniques, such as X-ray diffraction (XRD), BET, scanning electron microscope (SEM). The results showed that nano titania was laoded on the organic bentonite, the basal spacing and specific surface area of absorbent were increased significantly. The influences of preparation and adsorption conditions on the adsorption performance were also studied. The results indicated the optimum reaction condition was as follows:pH 6, the calcination temperature 300℃, the calcination time 4 hours, and the nanometer titania content 80%.Under the conditions of pH of 6,adsorption time of 5 h, initial concentration of oxytetracycline hydrochloride of 25 mg·L-1,the adsorption capacity could reach 97.3%.
-
Key words:
- organic bentonite /
- nano titania /
- adsorption /
- oxytetracycline hydrochloride
-
畜禽饲料添加蓝矾或称胆矾(CuSO4·5H2O)、皓矾(ZnSO4·7H2O)等重金属化合物,以增强畜禽的免疫力,促进畜禽的生长[1-2],其中的Cu、Zn等重金属元素通过粪便排出体外[3],导致畜禽粪污中重金属含量超标,其中猪粪的Cu、Zn超标最为显著[4]. 我国一些地区对畜禽粪污排放管控不严,粪污未经处理就被排放到农田作为农肥,引起潜在的土壤重金属污染风险. 重金属Cu、Zn虽然是植物生长所需的微量元素,但过量的Cu、Zn会损害植物根系,抑制动植物生长,还会降低土壤中的生物量及生物活性,最终影响农作物的生长及农产品的安全.
为了减少猪粪农用风险,国家大力倡导利用厌氧发酵技术处理畜禽粪便[5],该技术不仅可以产生清洁能源、减少粪便体积,还能在一定程度上降低重金属生物有效性. 李轶等[6]研究表明,猪粪发酵过程中重金属钝化与发酵原料腐殖化存在着一定关系. 发酵原料腐殖化会产生腐殖质,腐殖质中含有大量羧基、羰基等官能团会与重金属发生吸附络合反应[7],从而降低重金属的生物有效性. 但由于重金属超标,发酵过程中微生物群落代谢功能会受到高浓度重金属的抑制[8],导致腐殖化程度低,钝化效果差. 单一的猪粪厌氧发酵对重金属钝化效果较差,因此就有学者研究在发酵过程中添加钝化剂来有效减少重金属的危害,提高重金属钝化效果[9-10].
腐殖酸(HA)本身就是腐殖化的产物,是农业废弃物转化的产品,可以作为园艺生物改良剂,促进种子萌发、根系发育和植物生长[11]. 同样,腐殖酸可以改善植物细胞内的生化反应并具有直接的营养价值. 此外,腐殖酸被认为是一种含有多种官能团的钝化剂,包括酚类、羧酸类和酮类,可以通过吸附和络合反应与重金属结合[12]. 但是,关于添加腐殖酸对猪粪厌氧发酵中重金属钝化的研究很少,主要都研究发酵前后变化,很少研究发酵过程中的动态变化. 同时在厌氧发酵过程中,腐殖化程度的高低是一个重要的评判标准. 目前由于光谱技术的快速发展,傅里叶红外光谱技术(FTIR)已成为分析厌氧发酵过程中有机物和腐殖质含量变化的常规技术,主要归功于其所需样品量少,测样速度快,灵敏度高等特点. 李轶等[13]就采用FTIR研究猪粪厌氧发酵沼渣中的光谱特性,FTIR可以有效反映猪粪厌氧发酵后的腐殖化程度.
本文主要研究添加腐殖酸对猪粪厌氧发酵过程中重金属及对厌氧发酵前后有机物结构变化的影响,涉及的主要研究内容包括:(1)采用BCR连续提取法来研究重金属(Cu、Zn)形态的动态变化;(2)利用傅里叶红外光谱技术(FTIR)探索猪粪发酵前后有机物结构的变化[14],揭示重金属钝化与有机物腐殖化程度的关系,为增加猪粪厌氧发酵产气量、减量化和重金属钝化提供理论依据,为降低猪粪中重金属Cu、Zn有效性、降低重金属污染风险和提高发酵质量提供技术指导.
1. 材料与方法(Materials and methods)
1.1 实验原料
新鲜猪粪取自常州市某养猪场;沼液取自常州市武农生态能源工程有限公司;玉米秸秆取自联丰农产品有限公司;腐殖酸购自合肥巴斯夫生物科技有限公司(表1).
表 1 猪粪/玉米秸秆主要成分Table 1. Main components of pig manure/corn stover材料Material 含水率/%Water content 总有机碳含量/%Total organic carbon content 总氮含量/%Total nitrogen content C/N Cu含量/(mg·kg−1)Cu content Zn含量/(mg·kg−1)Zn content 猪粪 79.84 9.20 0.59 15.59 254.17 1039.83 玉米秸秆 4.45 15.13 0.36 42.03 ND ND 注:ND表示未检出. ND means not detected. 1.2 厌氧发酵装置
本实验厌氧发酵装置主要由发酵瓶、集气瓶和集水瓶3部分组成. 发酵瓶为有效容积0.8 L,规格1L的广口瓶. 集气瓶为有效容积0.6 L,规格0.8 L的广口瓶. 集水瓶为普通0.6 L的塑料瓶.
实验中发酵瓶和集气瓶分别用橡胶塞塞紧后用玻璃管和橡皮管连接,各接口处都严格密封,保证厌氧环境. 将装有发酵原料的发酵瓶放入(35±1)℃恒温水浴锅中厌氧发酵. 厌氧发酵装置如图1所示.
1.3 实验设计方案
本实验发酵原料为猪粪和玉米秸秆,玉米秸秆用来控制C/N比,C/N为24[15],将粉碎后的秸秆与新鲜猪粪按均匀混合后装入发酵罐,沼液添加量为30%,加水调节使消化体系内的TS为10%,pH控制在 6.5—7.8之间,钝化剂添加量为发酵瓶内干物质含量的2.5%、5%、7.5%,试验共设计4组如表2所示,每组重复3次,结果取平均值. 分别在0、5、10、15、20、25、30 d取样,采用一次性进料,发酵周期为30 d.
表 2 实验处理组Table 2. Experimental treatment groups编号Serial number 处理组Treatment group CK 猪粪+玉米秸秆 F1 猪粪+玉米秸秆+2.5%腐殖酸 F2 猪粪+玉米秸秆+5.0%腐殖酸 F3 猪粪+玉米秸秆+7.5%腐殖酸 1.4 测试项目与方法
沼渣的采取:先摇匀发酵瓶中发酵原料,然后取样,离心(3000 r·min−1,5 min)后上层清液为沼液,下层沉淀为沼渣,烘干研磨过100目筛,保存待测.
重金属形态含量结合欧共体标准司提出的BCR连续提取法和火焰原子吸收分光光度计来测定[16],BCR连续提取法将重金属分为4种形态,即:弱酸提取态、可还原态、可氧化态和残渣态. 其中,弱酸提取态和还原态进入环境后迁移性强,易被植物吸收利用,被称为生物有效形态;可氧化态和残渣态称为稳定态,不易被吸收和利用[16]. 发酵原料光谱特性采用傅里叶红外光谱法检测[17]. 根据测定结果计算以下指标[6]:
重金属形态占比(%)=各重金属形态含量/各重金属形态含量之和 × 100%
重金属生物有效形态(%)=弱酸提取态占比 + 可还原态占比
钝化效果(%)=(发酵前-发酵后)重金属有效形态/发酵前重金属有效形态 × 100%
2. 结果与讨论(Results and discussion)
2.1 腐殖酸对厌氧发酵中日产气量和累计产气量的影响
图2显示了猪粪/玉米秸秆厌氧发酵过程中日产气量和累计产气量的变化情况. 由图2(a)可知,随着时间的进行,各处理组厌氧发酵的日产气量在逐步上升,在第6天时,处理组F3达到了最高峰355.2 mL·d−1. 第7天时,处理组F1和F2日产气量相继达到了最高峰,分别是327.1 mL·d−1和345.1 mL·d−1. 到第8天时,对照组CK日产气量才达到最高峰231.2 mL·d−1. 接下来随着厌氧发酵的进行,由于发酵原料被微生物不断地消耗,日产气量逐渐呈下降趋势,到第30天时各组日产气量基本为0. 通过比较对照组与处理组,发现最大日产气量时间出现顺序:F3、F2、F1、CK,即对照组CK出现的时间最晚,说明腐殖酸的添加促进了发酵系统中微生物的代谢活动.
从图2(b)可知,各处理组的累计产气量的变化趋势. CK、F1、F2和F3最终总产气量分别是1321.9 、1583.72、1697.8、1986.2 mL. 各处理组F1、F2、F3总产气量均高于对照组CK,与对照组CK相比分别提高了19.81%、28.44%、50.25%. 其中,处理组F3提高最明显,添加7.5%腐殖酸产气效果最佳,说明腐殖酸促进了厌氧发酵,提高了有机物的降解效率,腐殖酸本身就是农业废弃物发酵后的产物,其很稳定,难以被微生物降解而导致产气量增多[18],产气量增多主要原因是腐殖酸中含有大量酚类和羧基基团能与重金属离子结合,添加的腐殖酸与重金属发生络吸附络合反应[19-21],降低了重金属的生物有效性,防止了重金属超标抑制微生物的活动.
2.2 添加腐殖酸对厌氧发酵过程沼渣中重金属(Cu、Zn)形态的动态变化特征
2.2.1 Cu形态的动态变化特征
猪粪/玉米秸秆厌氧发酵过程中各处理组沼渣中重金属Cu各形态的变化如图3所示. 由图3可得出Cu形态的动态变化特征如下:
(1)从弱酸提取态来看,4组处理组中弱酸提取态Cu占比随着厌氧发酵的进行都呈下降的趋势. 发酵后CK中弱酸提取态Cu下降了9.01%,添加腐殖酸的处理组F1、F2、F3都分别下降了15.83%、16.38%、19.92%,下降幅度都明显高于CK.
(2)从可还原态来看,4组处理组中可还原态Cu占比下降趋势与弱酸提取态基本一致,呈下降趋势. 发酵前4组处理组可还原态Cu占比都差不多,发酵后4组处理组可还原态Cu占比从高到低依次为:CK>F1>F2>F3. 说明添加腐殖酸更易降低可还原态Cu含量.
(3)从可氧化态来看,4组处理组中可氧化态Cu都呈上升趋势,发酵结束后CK、F1、F2、F3可氧化态Cu都上升了14.13%、22.98%、27.50%、32.23%,上升幅度越来越大,其中F3上升幅度最大. 说明添加腐殖酸可以加速可氧化态Cu占比的增加.
(4)从残渣态来看,各处理组中残渣态Cu占比都较少,随着厌氧发酵的进行,各处理组中残渣态Cu呈上升趋势. 发酵结束后CK、F1、F2、F3残渣态Cu增幅分别为3.55%、7.22%、7.39%、7.99%. 添加腐殖酸的处理组的增幅明显高于对照组CK,说明腐殖酸对残渣态Cu的形成具有促进作用.
(5)从生物有效形态来看,各处理组中重金属Cu生物有效形态占比都逐渐减少,下降幅度有所不同. CK、F1、F2、F3生物有效形态Cu占比降幅分别为17.68%、30.20%、34.89%、40.22%. 添加腐殖酸显著降低重金属Cu的生物有效性,促进了重金属Cu的不稳定形态向稳定形态的转化. 其中,添加7.5%的腐殖酸使重金属Cu生物有效形态下降幅度可达40.22%,明显高于CK.
2.2.2 Zn形态的动态变化特征
猪粪/玉米秸秆厌氧发酵过程中各处理组沼渣中重金属Zn各形态的变化如图4所示. 沼渣中重金属Zn主要是以弱酸提取态和可还原态的形式存在,由图4可得出Zn形态的动态变化特征如下:
(1)从弱酸提取态来看,厌氧发酵过程中对照组中弱酸提取态Zn占比下降比较平缓,下降幅度为6.25%. 然而,处理组F1、F2、F3都先是下降较快,接着保持平缓,下降幅度分别为15.27%、22.76%、19.76%,下降幅度都明显高于对照组CK.
(2)从可还原态来看,对照组CK中可还原态Zn占比并没有随着厌氧发酵的进行而变化,基本都维持在48%左右. 其他添加腐殖酸的处理组中可还原态Zn占比趋势都是先上升随后有所下降,发酵后可还原态Zn占比都比发酵前多. 说明腐殖酸并没有促进可还原态Zn的转化.
(3)从可氧化态来看,4组处理组中可氧化态Zn的占比明显小于可还原态Zn的,主要原因是Zn是两性金属,较活泼,与腐殖酸吸附络合的稳定性没有Cu高. 但可氧化态Zn的趋势与可氧化态Cu一样,呈上升趋势. 发酵结束后CK、F1、F2、F3可氧化态Zn分别上升了1.56%、4.78%、7.66%、8.89%. F1、F2、F3的上升幅度都明显高于CK.
(4)从残渣态来看,各处理组中残渣态Zn占比较少,随着厌氧发酵的进行,各处理组中残渣态Zn呈上升趋势. 发酵结束后CK、F1、F2、F3残渣态Zn增幅分别为3.53%、5.04%、5.15%、6.52%. 添加腐殖酸的处理组的增幅明显高于对照组CK,说明腐殖酸对残渣态的形成具有促进作用.
(5)从生物有效形态来看,各处理组中重金属Zn生物有效形态占比都逐渐减少,下降幅度有所不同. CK、F1、F2、F3生物有效形态Zn占比降幅分别为5.09%、9.82%、12.81%、15.41%. 腐殖酸的添加显著降低重金属Zn的生物有效性,促进了重金属Zn不稳定形态向稳定形态的转化.
综上实验结果表明,添加腐殖酸促进了厌氧发酵过程中重金属(Cu、Zn)有效形态含量的下降,钝化效果有了明显的提升. 这种现象主要是因为腐殖酸是一种离子交换能力很强的钝化剂,其主要结构是羧酸、醇羟基等多种活性官能团. 这些活性官能团会与阳离子重金属(Cu2+、Zn2+)发生络合反应形成络合物,从而降低生物有效性. 但对两种重金属的生物有效态下降有明显差别,在发酵系统中重金属Cu与Zn会有竞争关系. 根据Kerndorff等[22]研究,腐殖酸对重金属的吸附络合顺序为:Hg>Fe>Pb>Cu>Al>Ni>Cr>Zn>Cd>Co>Mn,可知腐殖酸对重金属Cu的吸附络合能力强于重金属Zn. 在发酵系统中腐殖酸会率先吸附络合重金属Cu,当腐殖酸中重金属Cu饱和后才会去吸附络合重金属Zn[19],因此可氧化态Zn的占比明显低于可氧化态Cu. 然而,发酵后可还原态Zn占比变化不明显,还略有所回升,这可能主要归因于Zn是两性金属化合物,其活性、迁移能力较强,在可还原条件下容易被释放,同时厌氧发酵过是一个极其复杂的过程,微生物在分解有机物时,会将本来与有机物相结合的Zn分解了,形成游离态,从而导致可还原态Zn略有增加.
2.3 添加腐殖酸对厌氧发酵过程沼渣中重金属(Cu、Zn)钝化效果的影响
重金属钝化效果直观的反映了添加腐殖酸对厌氧发酵过程沼渣中重金属(Cu、Zn)钝化作用的强弱,图5为各处理组沼渣中重金属(Cu、Zn)钝化效果.
从图5可知,各处理组经过厌氧发酵结束后重金属Cu钝化效果由高到低的次序为:F3(58.72%)>F2(50.57%)>F1(43.18%)>CK(24.86%). 通过对重金属Cu钝化效果进行方差分析,结果表明添加腐殖酸对重金属Cu钝化效果有显著影响(P<0.05),其中处理组F3的影响最为显著,因此说明添加腐殖酸有效提高了对重金属Cu的钝化效果,促进了稳定态Cu的增多. 重金属Zn钝化效果顺序为:F3(17.95%)>F2(14.72%)>F1(11.37%)>CK(5.84%),对重金属Zn钝化效果方差分析,结果表明添加腐殖酸对重金属Cu、Zn钝化效果都有显著影响(P<0.05),其中F3的钝化效果较好,对重金属Cu、Zn的钝化效果分别为58.72%、17.95%.
综上实验结果,腐殖酸对重金属Cu的钝化效果明显优于对重金属Zn的钝化效果,这主要与重金属Zn的特性有关,重金属Zn是两性重金属,较为活泼,易在不同环境中流动,因此重金属Zn较难被钝化. 同时,在发酵系统中重金属Zn主要与小分子物质结合,并且结合不紧密易被植物吸收,重金属Cu则主要与大分子物质结合,并且结合紧密较为稳定[23-24],腐殖酸是一种大分子物质,因此重金属Cu更易被腐殖酸吸附络合形成稳定态,从而导致重金属Cu的钝化效果明显优于对重金属Zn.
2.4 添加腐殖酸对厌氧发酵后沼渣红外光谱特性的影响
本实验利用傅里叶红外光谱技术(FTIR)来研究厌氧发酵过程中有机物的矿化和腐殖化程度. FTIR特征吸收带归属[25]见表3,厌氧发酵前后沼渣的红外光谱的变化情况如图6所示[13].
表 3 FTIR特征吸收带归属Table 3. Assignment of characteristic absorption bands of FTIR波数/ cm−1 Wavenumber 振动峰 Vibration peak 基团 Group 3408—3450 O—H 碳水化合物、酰胺化合物、蛋白质、水 2850—2922 C—H 碳水化合物、脂肪族化合物的亚甲基 1600—1653 C=O、—COO—、C=C、N—H 羧酸盐、烯烃、酯类、酰胺类、芳香族 1400—1430 C—O、—COO—、—OH、—CH2 木质素、脂肪族化合物、羧酸盐 1105—1160 C—O—C、C—O、C—N 糖类、脂肪族化合物、氨基酸盐 从图6可知,厌氧发酵前后的各个处理组沼渣的光谱特性都基本相似,只是在相对强度上有一些差异. 这主要可能与添加了不同比例的腐殖酸有关,但其主要的发酵原料还是猪粪,这一结果与栾润宇等[26]的研究一致. 图7中,3408—3450 cm−1、 2850—2922 cm−1、1600—1653 cm−1、1105—1160 cm−1这几个代表性峰值的强度变化比较明显.
结合表3和图7可知,在3408—3450 cm−1和2850—2922 cm−1峰处,厌氧发酵后各处理组在该两处峰的相对强度与未发酵的猪粪/玉米秸秆相比均有所降低,降幅由大到小依次为F3、F2、F1、CK. 前一峰表明添加腐殖酸促进了碳水化合物、酰胺化合物、蛋白质等有机物被分解为简单有机物,导致—OH基团的减少. 后一峰表明发酵原料中的碳水化合物与脂肪族化合物等有机物在微生物的矿化,代谢作用下被降解,导致—CH基团的减少. 此外,在1600—1653 cm−1峰处,发酵后各处理组在该处峰的相对强度与未发酵的猪粪/玉米秸秆相比均有所提高,F1、F2、F3在该处峰的相对强度均高于CK. 这表明添加腐殖酸促进被分解的简单有机物在微生物的作用下聚合成芳香环类、烯烃类腐殖质,加速了饱和碳向不饱和碳的形成[27],促使了腐殖质相对含量的增加. 综上,在厌氧发酵过程中,带有—OH、—CH2、—CH3的基团有机物在减少,带有C=O、—COO—、C—O—C和芳香环基团的有机物在增加. 表明了厌氧发酵促进了高分子有机物的分解和提高了沼渣的腐殖化程度. 添加腐殖酸后微生物的代谢活性更高,产生了更多的芳香族,腐殖化程度更高,其中F3腐殖化程度最佳.
近年来的众多学者研究结果显示[6, 13, 28],可用在芳香族碳(1647 cm−1)处的特征峰强度与碳水化合物碳(3435 cm−1)、脂肪族碳(2974 cm−1)、羧酸碳(1406 cm−1)、多糖碳(1112 cm−1)的比值(分别记为A、B、C、D)来表示厌氧发酵中有机物官能团结构的变化,来评价猪粪厌氧发酵的腐殖程度. 比值越高表明碳水化合物、脂肪族化合物、羧酸类、多糖类物质含量在减少,芳香族碳在增加,发酵原料中腐殖化程度越高.
由表4可知,未发酵的猪粪/玉米秸秆的A值为1.035,CK发酵后A值为1.037 ,添加腐殖酸的处理组厌氧发酵后A值依次上升均大于CK,表明厌氧发酵过程中添加腐殖酸有利于促进碳水化合物往芳香族化合物转化. 未发酵的猪粪/玉米秸秆B值为0.933,CK发酵后B值为0.951,增幅1.93%,F1、F2、F3的增幅依次为5.89%、7.40%、8.44%,都大于CK. 未发酵的猪粪/玉米秸秆的C值为0.950,厌氧发酵后各处理组C值由大到小的依次为F3、F2、F1、CK. 未发酵的猪粪/玉米秸秆的D值为1.031,与其相比,CK、F1、F2、F3的增幅分别为3.20%、3.30%、5.24%、10.18%. 综合分析以上各特征参数比值表明,添加腐殖酸促进碳水化合物和多糖物质向芳香族化合物转化,提高了猪粪/玉米秸秆厌氧发酵的腐殖化程度,其中7.5%添加比例最佳,F3腐殖化程度最高. 这可能由于添加的外源腐殖酸率先吸附钝化发酵系统中的超标的重金属,给微生物提供了适宜的环境,促进了有机物的分解以及厌氧发酵的腐殖化程度.
表 4 各处理组的特征参数比值Table 4. The ratio of characteristic parameters of each treatment group处理组Treatment group 时间Time A芳香族碳/碳水化合物碳Aromatic carbon / Carbohydrate carbon B芳香族碳/脂肪族碳Aromatic carbon / Aliphatic carbon C芳香族碳/羧酸碳Aromatic carbon / Carboxylic carbon D芳香族碳/多糖碳Aromatic carbon / Polysaccharide carbon 猪粪/玉米秸秆 未发酵 1.035 0.933 0.950 1.031 CK 发酵后 1.037 0.951 0.982 1.064 F1 发酵后 1.046 0.988 1.014 1.065 F2 发酵后 1.049 1.002 1.027 1.085 F3 发酵后 1.144 1.012 1.028 1.136 傅里叶红外光谱技术(FTIR)结果表明添加了腐殖酸,厌氧发酵后腐殖化程度越高. 主要原因:1)厌氧发酵是微生物参与的生物过程,腐殖酸能够疏松发酵原料[29-30],添加腐殖酸提高了发酵原料的孔隙率,为微生物提供了适宜的环境来分解有机物,加快了腐殖化程度. 2)厌氧发酵过程中发酵原料中重金属元素会抑制硝化反硝化过程[31-32],当这些元素浓度过高时会破坏微生物的结构和功能,甚至产生毒性抑制作用. 因此,腐殖酸在这起到了关键作用,厌氧发酵过程中钝化机理推测如图7所示,未添加腐殖酸时发酵系统中不稳定态Cu、Zn过高,将抑制微生物活性.
添加腐殖酸后,腐殖酸与发酵原料中的重金属吸附络合反应形成稳定的重金属形态,不稳定态重金属含量减少,降低了不稳定态重金属过高而破坏微生物结构和功能的风险,从而促进厌氧发酵,提高沼渣腐殖化程度. 腐殖化程度提高,进一步增加了发酵系统中腐殖质的含量,腐殖质分子富含羧基和羟基,可与金属阳离子形成稳定的络合物[33],从而进一步降低重金属(Cu、Zn)的生物有效性,由于腐殖酸络合重金属Cu的能力强于Zn,重金属Cu钝化效果要优于重金属Zn的. 就本实验研究结果而言,F3添加7.5%腐殖酸的处理组中腐殖化程度最高,重金属(Cu、Zn)钝化效果也最佳.
3. 结论(Conclusion)
(1)厌氧发酵结果表明,添加腐殖酸对厌氧发酵产气量具有促进作用,添加腐殖酸的F1、F2、F3累计产气量分别比CK提高了19.81%、28.44%和50.25%.
(2)厌氧发酵过程中添加腐殖酸利于促进重金属(Cu、Zn)的有效态向稳定态转化,其中,重金属Cu生物有效性下降程度比重金属Zn明显,F3中重金属Cu生物有效形态下降幅度可达40.22%.
(3)厌氧发酵过程中添加腐殖酸有利于提高重金属Cu、Zn钝化效果,腐殖酸对重金属Cu的钝化效果优于对重金属Zn,F3钝化效果较好,对重金属Cu、Zn的钝化效果分别为58.72%、17.95%;通过方差分析,添加腐殖酸对重金属Cu、Zn钝化效果显著(P<0.05);F3的钝化效果优于其他处理组.
(4)傅里叶红外光谱(FTIR)结果显示,猪粪厌氧发酵后各处理组沼渣中碳水化合物、脂肪族化合物等有机物分解、减少,芳香族化合物等腐殖质含量增多,腐殖化程度提高. 其中,F3添加7.5%腐殖酸的处理组中腐殖化程度最高.
(5)重金属钝化法只能缓解畜禽粪便重金属污染问题,为了能够从源头解决,促进绿色健康食品的发展,建议有关部门和科研单位大力开发、推广高效畜禽免疫制剂,替代重金属饲料添加剂,杜绝畜禽粪便重金属污染.
-
[1] 赵欢, 李姣, 关卫省. 液相法制备纳米TiO2的工艺及其光催化降解盐酸土霉素的研究[J]. 应用化工, 2012, 41(8):1354-1357 [2] 刘小云, 舒为群. 水中抗生素污染现状及检测技术研究进展[J]. 中国卫生检验杂志, 2005, 15(8):1011-1014 [3] 晁显玉, 曹红翠, 古小超. 抗生素类废水处理方法的研究概述[J]. 山西化工, 2015, 35(3):78-82 [4] 史瑞明, 王峰, 杨玉萍. 抗生素废水处理现状与研究进展[J].山东化工, 2007, 36(11):10-14 [5] LI S Z,LI X Y,WANG D Z. Membrane(RO-UF)fihrationfor antibiotic wastewater treatment and recoveryof ant-ibioticsl[J].Separation and Purification Teehnoogy, 2004, 34(13):109-114 [6] 祁彦洁,刘菲. 地下水中抗生素污染检测分析研究进展[J].岩矿测试, 2014, 33(1):1-11 [7] 刘佳, 隋铭皓, 朱春艳. 水环境中抗生素的污染现状及其去除方法研究进展[J]. 四川环境, 2011, 30(2):111-114 [8] 李霞, 胡勤海, 陈菊芬, 等. 纳米TiO2/硅藻土光催化降解废水中二甲胺[J].环境工程学报, 2013, 7(8):3073-1029 [9] SHI Q, JIANG C Y, WANG Y P, et al. Preparation and characterization of PVA-I complex doped mesoporous TiO2 by hydrothermal method[J]. Applied Surface Science,2013,273:769-755 [10] 杨茜怡, 孙洋洋. Zn/Ti-ATPs的合成及其光催化降解盐酸四环素的研究[J]. 应用化工, 2014, 43(6):1025-1028 [11] 赵雪辉, 蒋彩云, 王玉萍. PVA-I修饰介孔TiO2光催化剂对盐酸四环素的光降解[J].环境工程学报, 2014, 8(10):4060-4066 [12] 杨召营, 李晓静. 纳米材料与技术在水处理中的应用[J]. 化工技术与开发, 2012, 41(1):23-25 [13] 杨盛春, 贺洁, 何丽仙. 有机插层膨润土的制备及吸附性能研究[J]. 化工科技, 2014, 22(4):21-24 [14] 黄丽华, 赵峰, 陈建民, 等. 纳米TiO2光催化降解直接耐晒蓝的研究[J]. 环境化学, 2003, 22(4):359-363 [15] 李静谊, 斯琴高娃, 刘丽娜. TiO2/膨润土光催化降解有机污染物[J]. 物理化学学报, 2007, 23(1):16-20 期刊类型引用(4)
1. 马静,马子然,林德海,马少丹,王宝冬. 活化液助溶剂对再生脱硝催化剂性能的影响. 化工进展. 2022(08): 4173-4180 . 百度学术
2. 马子然,周佳丽,马静,赵春林,林德海,李歌,王宝冬. 燃煤电厂脱硝催化剂宽负荷运行的现状与发展. 中国电机工程学报. 2022(23): 8415-8431 . 百度学术
3. 万杰,袁潇娴,吴功德,翁端. 2019年环境材料热点回眸. 科技导报. 2020(01): 93-107 . 百度学术
4. 李燕,黄军,林法伟,邵嘉铭,王智化,向柏祥. Mn_αTi_(1-α)催化剂NH_3选择性催化还原NO的中低温活性及机理研究. 燃料化学学报. 2020(01): 91-99 . 百度学术
其他类型引用(2)
-

计量
- 文章访问数: 1835
- HTML全文浏览数: 1439
- PDF下载数: 480
- 施引文献: 6