北京市典型城市河流(凉水河)沉积物耗氧污染特征

李延, 单保庆, 唐文忠, 陈静. 北京市典型城市河流(凉水河)沉积物耗氧污染特征[J]. 环境工程学报, 2017, 11(9): 5065-5070. doi: 10.12030/j.cjee.201609081
引用本文: 李延, 单保庆, 唐文忠, 陈静. 北京市典型城市河流(凉水河)沉积物耗氧污染特征[J]. 环境工程学报, 2017, 11(9): 5065-5070. doi: 10.12030/j.cjee.201609081
LI Yan, SHAN Baoqing, TANG Wenzhong, CHEN Jing. Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5065-5070. doi: 10.12030/j.cjee.201609081
Citation: LI Yan, SHAN Baoqing, TANG Wenzhong, CHEN Jing. Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5065-5070. doi: 10.12030/j.cjee.201609081

北京市典型城市河流(凉水河)沉积物耗氧污染特征

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2012ZX07203-006)

    环境模拟与污染控制国家重点联合实验室专项经费(15L01ESPC)

  • 中图分类号: X703

Pollution characteristic of sediment oxygen demand in typical urban river (Liangshui River) of Beijing city, China

  • Fund Project:
  • 摘要: 针对北运河水系沉积物耗氧污染严重问题,选择凉水河上、中、下游作为研究对象,探讨了沉积物中NH4+-N、TOC、SOD的分布特征,初步判断了沉积物耗氧情况。结果表明凉水河表层沉积物中NH4+-N和TOC含量均较高。其中:NH4+-N在凉水河上游最高,均值为114.38 mg·kg,中游最低,均值为54.06 mg·kg-1;TOC在凉水河上、中、下游依次降低,均值分别为3.64%、3.36%和1.81%。凉水河表层沉积物SOD较高,且变化范围较大,沉积物耗氧污染较为严重。其中:凉水河中游SOD最高,均值为1.012 g·(m2·d)-1;上游最低,均值为0.939 g·(m2·d)-1。
  • 加载中
  • [1] 朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J]. 湖泊科学, 2001, 13(3):272-279
    [2] MA Z W, CHEN K, YUAN Z W, et al. Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes[J]. Journal of Environmental Quality, 2013, 42(2):341-350
    [3] 聂新华, 郎印海, 贾永刚. 胶州湾河口沉积物中耗氧有机物的释放研究[J]. 海洋环境科学, 2006, 25(4):11-14
    [4] FU J, ZHAO C P, LUO Y P, et al. Heavy metals in surface sediments of the Jialu River, China:Their relations to environmental factors[J]. Journal of Hazardous Materials, 2014, 270:102-109
    [5] SENER S, DAVRAZ A, KARAGUZEL R. Assessment of trace metal contents in water and bottom sediments from Eğirdir Lake, Turkey[J]. Environment Earth Science, 2014, 71(6):1-13
    [6] 蒋新,许士奋,MARTENS D,等. 长江南京段水、悬浮物及沉积物中多氯有毒有机污染物[J]. 中国环境科学, 2000, 20(3):193-197
    [7] 谢婷, 张淑娟, 杨瑞强. 偏远高山湖泊沉积物中持久性有机污染物的沉积记录研究[J]. 环境化学, 2014, 33(10):1791-1801
    [8] 马晓磊, 徐继荣, 张德民,等. 城市内河强还原性沉积物耗氧及相关因素研究[J]. 环境科学研究, 2010, 23(12):1499-1505
    [9] WALKER R, SNODGRASS W. Model for sediment oxygen demand in lakes[J].Journal of Environmental Engineering, 1986, 112(1):25-43
    [10] BELANGER T V. Benthic oxygen demand in lake Apopka, Flordia[J]. Water Research, 1981, 15(2):267-274
    [11] 乔士斌, 林钦. 大鹏澳网箱养殖区沉积物耗氧的初步研究[J]. 南方水产, 2006, 2(3):32-39
    [12] PARR L, MASON C. Causes of low oxygen in a lowland, regulated eutrophic river in Eastern England[J]. Science of Total Environment, 2004, 321(1/2/3):273-286
    [13] HATCHER K J. Sediment oxygen demand:Processes, modeling, and measurement[D]. Athens, Georgia:University of Georgia Institute of Natural Resources, 1986
    [14] ZIADAT A H, BERDANIER B W. Stream depth significance during in-situ sediment oxygen demand measurements in shallow streams[J]. Journal of the American Water Resources Association, 2004, 40(3):631-638
    [15] JOSIAM R M, STEFAN H G. Effect of flow velocity on sediment oxygen demand:Comparison of theory and experiments[J]. Journal of the American Water Resources Association, 1999, 35(2):433-439
    [16] 彭斌,黄金田,王资生.沿海滩涂养殖水体中溶解氧的变化及其影响因素[J]. 水生态学杂志, 2008, 29(5):97-99
    [17] 郭婧, 荆红卫, 李金香,等. 北运河系地表水近10年来水质变化及影响因素分析[J]. 环境科学, 2012, 33(5):1511-1518
    [18] 许晓伟, 刘德文, 车洪军,等. 北运河水环境调查与评价[J]. 海河水利, 2009(2):14-15
    [19] 童保铭, 陈添, 徐谦, 等. 北京市北运河系水质有机污染时空变化研究[J]. 首都师范大学学报(自然科学版), 2009, 30(3):56-60
    [20] 鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社, 2013
    [21] CHAU K W. Field measurements of SOD and sediment nutrient fluxes in a land-locked embayment in Hong Kong[J]. Advances in Environmental Research, 2002, 6(2):135-142
    [22] 臧家业, 庞雪辉, 冉祥滨,等. 底泥耗氧研究的主要技术手段及进展[J]. 海洋开发与管理, 2010, 27(11):36-40
    [23] RASMUSSEN H, JORGENSEN B B. Microelectrode studies of seasonal oxygen uptake in a coastal sediment:Role of molecular diffusion[J]. Marine Ecology Progress Series, 1992, 81(3):289-303
    [24] BERG P, RISGAARA P N, RYSGAARD S. Interpretation of measured concentration profiles in sediment pore water[J]. Limnology and Oceanography, 1998, 43(7):1500-1510
    [25] BERG P, RΦY H, JANSSEN F, et al. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy correlation technique[J]. Marine Ecology Progress, 2003, 261(8):75-83
    [26] BER P, RΦY H, WIBERG P. Eddy correlation flux measurements:The sediment surface area that contributes to the flux[J]. Limnology and Oceanography, 2007, 52(4):1672-1684
  • 加载中
计量
  • 文章访问数:  1850
  • HTML全文浏览数:  1416
  • PDF下载数:  482
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-10-23
  • 刊出日期:  2017-08-26

北京市典型城市河流(凉水河)沉积物耗氧污染特征

  • 1. 北京市凉水河管理处, 北京 100054
  • 2. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085
基金项目:

国家水体污染控制与治理科技重大专项(2012ZX07203-006)

环境模拟与污染控制国家重点联合实验室专项经费(15L01ESPC)

摘要: 针对北运河水系沉积物耗氧污染严重问题,选择凉水河上、中、下游作为研究对象,探讨了沉积物中NH4+-N、TOC、SOD的分布特征,初步判断了沉积物耗氧情况。结果表明凉水河表层沉积物中NH4+-N和TOC含量均较高。其中:NH4+-N在凉水河上游最高,均值为114.38 mg·kg,中游最低,均值为54.06 mg·kg-1;TOC在凉水河上、中、下游依次降低,均值分别为3.64%、3.36%和1.81%。凉水河表层沉积物SOD较高,且变化范围较大,沉积物耗氧污染较为严重。其中:凉水河中游SOD最高,均值为1.012 g·(m2·d)-1;上游最低,均值为0.939 g·(m2·d)-1。

English Abstract

参考文献 (26)

目录

/

返回文章
返回