风道式光催化反应器降解VOCs的效果分析

段波, 郑洁, 宋雪瑞, 黄锋. 风道式光催化反应器降解VOCs的效果分析[J]. 环境工程学报, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183
引用本文: 段波, 郑洁, 宋雪瑞, 黄锋. 风道式光催化反应器降解VOCs的效果分析[J]. 环境工程学报, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183
DUAN Bo, ZHENG Jie, SONG Xuerui, HUANG Feng. Effect analysis on VOCs removal in duct photocatalytic reactor[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183
Citation: DUAN Bo, ZHENG Jie, SONG Xuerui, HUANG Feng. Effect analysis on VOCs removal in duct photocatalytic reactor[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183

风道式光催化反应器降解VOCs的效果分析

  • 基金项目:

    国家自然科学基金资助项目(51478058)

    重庆市应用开发计划项目(cstc2013yykfC00002)

    重庆市建设科技计划项目(城科字2013第1-5-2)

  • 中图分类号: O643

Effect analysis on VOCs removal in duct photocatalytic reactor

  • Fund Project:
  • 摘要: 针对室内挥发性有机化合物(VOCs),搭建了带风道式反应器的模拟环境舱实验系统,选取甲醛、甲苯和苯为目标污染物,研究了光催化对各污染物的降解性能及其之间的相互影响。通过装置的优化,还对紫外光下目标VOC降解的主要副产物进行了检测。结果表明,单组分VOC的降解实验中,该净化器对3种污染物均具有良好的降解效果,其中对甲苯和苯的降解性能相似,对甲醛的降解性能更优。2组分VOCs降解实验中,目标组分会受到另一组分的不同程度影响;甲苯和苯无论是作为影响组分还是目标组分其实验结果均较接近;甲醛对甲苯、苯的降解影响明显大于两者的相互影响,即甲醛对两者的降解反应阻碍更大。甲苯的主要副产物为苯、苯甲醛和苯甲酸,苯的主要副产物为苯酚。
  • 加载中
  • [1] NOHR M, HORN W, JANN O, et al. Development of a multi-VOC reference material for quality assurance in materials emission testing[J]. Analytical and Bioanalytical Chemistry, 2015, 407(11): 3231-3237
    [2] 莫金汉, 张寅平, 杨瑞. 管状光催化反应器甲醛降解强化研究[J]. 暖通空调, 2007, 37(10): 70-72
    [3] DU J, LI N. Study on indoor air quality of ceiling radiant cooling panel system integrated with displacement ventilation[J]. Lecture Notes in Electrical Engineering, 2014,261: 497-505
    [4] CHENG Y H, LIN C C, HSU S C. Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions[J]. Building and Environment, 2015, 87: 274-282
    [5] FARHANIAN D, HAGHIGHAT F, LEE C S, et al. Impact of design parameters on the performance of ultraviolet photocatalytic oxidation air cleaner[J]. Building and Environment, 2013, 66: 148-157
    [6] DE_RICHTER R K, MING T, CAILLOL S. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors[J]. Renewable and Sustainable Energy Reviews, 2013, 19(1): 82-106
    [7] WU Y T, YU Y H, NGUYEN V H, et al. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level[J].Journal of Hazardous Materials, 2013, 262: 717-725
    [8] 高瑞平. 光催化技术在建筑环境与设备中的应用及研究现状[J]. 科技创业家, 2013,36(24): 29-36
    [9] 刘鹏, 郑洁, 黄锋, 等. 管状光催化反应器降解甲醛效果及其降解模型?[J]. 湖南大学学报(自然科学版), 2015, 42(6): 135-140
    [10] 郑洁, 吴思奇, 王小艳, 等. 管状光催化反应器的设计及其净化效果分析[J]. 重庆大学学报(自然科学版), 2016, 39(2): 146-152
    [11] 张运乾, 刘震炎, 高鹏, 等. 集中空调系统中光催化降解甲醛的实验研究[J]. 暖通空调, 2006, 36(9): 109-112
    [12] MILLS Andrew, O’ROURKE Christopher. Photocatalytic organic synthesis in an NMR tube: CC coupling of phenoxyacetic acid and acrylamide[J]. Catalysis Today, 2014, 230(7): 256-264
    [13] MO J, ZHANG Y, XU Q, et al. Photocatalytic purification of volatile organic compounds in indoor air: A literature review[J]. Atmospheric Environment,2009, 43(14): 2229-2246
    [14] TEKE A, TIMUR O. Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals[J]. Renewable and Sustainable Energy Reviews, 2014, 33(2): 224-235
    [15] 卢军, 郑洁, 刘鹏,等. 一种风道式光催化空气净化器:中国, CN104089348A[P]. 2014
    [16] 串禾, 刘鹏, 冉彬作,等. 一种研究光催化降解VOC的模拟装置:中国, CN102614778A[P]. 2012
    [17] FARHANIAN D, HAGHIGHAT F. Photocatalytic oxidation air cleaner: Identification and quantification of by-products[J]. Building and Environment,2014, 72(S1): 34-43
    [18] MO J, ZHANG Y, XU Q, et al. Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene[J]. Applied Catalysis B: Environmental, 2009, 89(3): 570-576
    [19] SLEIMAN M, CONCHON P, FERRONATO C, et al. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization[J]. Applied Catalysis B: Environmental, 2009, 86(3): 159-165
  • 加载中
计量
  • 文章访问数:  1755
  • HTML全文浏览数:  1435
  • PDF下载数:  803
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-08-17
  • 刊出日期:  2017-07-06
段波, 郑洁, 宋雪瑞, 黄锋. 风道式光催化反应器降解VOCs的效果分析[J]. 环境工程学报, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183
引用本文: 段波, 郑洁, 宋雪瑞, 黄锋. 风道式光催化反应器降解VOCs的效果分析[J]. 环境工程学报, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183
DUAN Bo, ZHENG Jie, SONG Xuerui, HUANG Feng. Effect analysis on VOCs removal in duct photocatalytic reactor[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183
Citation: DUAN Bo, ZHENG Jie, SONG Xuerui, HUANG Feng. Effect analysis on VOCs removal in duct photocatalytic reactor[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4162-4168. doi: 10.12030/j.cjee.201605183

风道式光催化反应器降解VOCs的效果分析

  • 1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆, 400045
基金项目:

国家自然科学基金资助项目(51478058)

重庆市应用开发计划项目(cstc2013yykfC00002)

重庆市建设科技计划项目(城科字2013第1-5-2)

摘要: 针对室内挥发性有机化合物(VOCs),搭建了带风道式反应器的模拟环境舱实验系统,选取甲醛、甲苯和苯为目标污染物,研究了光催化对各污染物的降解性能及其之间的相互影响。通过装置的优化,还对紫外光下目标VOC降解的主要副产物进行了检测。结果表明,单组分VOC的降解实验中,该净化器对3种污染物均具有良好的降解效果,其中对甲苯和苯的降解性能相似,对甲醛的降解性能更优。2组分VOCs降解实验中,目标组分会受到另一组分的不同程度影响;甲苯和苯无论是作为影响组分还是目标组分其实验结果均较接近;甲醛对甲苯、苯的降解影响明显大于两者的相互影响,即甲醛对两者的降解反应阻碍更大。甲苯的主要副产物为苯、苯甲醛和苯甲酸,苯的主要副产物为苯酚。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回