基于室内PM2.5控制和节能的通风策略探讨

吕晓慧, 张泠, 徐秀, 王喜良, 吴静. 基于室内PM2.5控制和节能的通风策略探讨[J]. 环境工程学报, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062
引用本文: 吕晓慧, 张泠, 徐秀, 王喜良, 吴静. 基于室内PM2.5控制和节能的通风策略探讨[J]. 环境工程学报, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062
LYU Xiaohui, ZHANG Ling, XU Xiu, WANG Xiliang, WU Jing. Ventilation strategies based on PM2.5 and energy-saving[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062
Citation: LYU Xiaohui, ZHANG Ling, XU Xiu, WANG Xiliang, WU Jing. Ventilation strategies based on PM2.5 and energy-saving[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062

基于室内PM2.5控制和节能的通风策略探讨

  • 基金项目:

    国家自然科学基金资助项目(51578221)

  • 中图分类号: X513;TU834.8

Ventilation strategies based on PM2.5 and energy-saving

  • Fund Project:
  • 摘要: 细颗粒物(PM2.5)随空调新风进入室内,和室内产生的PM2.5粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM2.5浓度与CO2体积分数双组分模型,提出了适用于某会议室不同室内外PM2.5源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM2.5散发源、温和天气室内有无PM2.5散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM2.5浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。
  • 加载中
  • [1] LIU Z, ZHANG L, GONG G, et al. Review of solar thermoelectric cooling technologies for use in zero energy buildings[J]. Energy and Buildings, 2015, 102: 207-216
    [2] TZIVANIDIS Christos, BELLOS Evangelos, MITSOPOULOS Georgios, et al. Energetic and financial evaluation of a solar assisted heat pump heating system with other usual heating systems in Athens[J]. Applied Thermal Engineering, 2016, 106: 87-97
    [3] BEN-DAVID T, WARING M S. Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities[J]. Building and Environment, 2016, 104: 320-336
    [4] LIU Z B, ZHANG L, GONG G, et al. Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply[J]. Energy and Buildings, 2015, 86: 619-625
    [5] 刘京, 邓小池. 需求控制通风技术在地下商场的节能研究[J]. 哈尔滨工业大学学报, 2010, 42(11): 1783-1787
    [6] 甄肖霞. 通过控制二氧化碳含量来实现节能和优化空气质量[J]. 制冷, 2004, 23(2): 67-70
    [7] 沈晋明, 聂一新. 通风空调对室内空气品质的影响[J]. 建筑热能通风空调, 2006, 25(5): 17-21
    [8] SCHELL M B, TURNER S C, SHIM R O. Application of CO2-based demand-controlled ventilation using ASHRAE Standard 62:optimizing energy use and ventilation[J]. Ashrae Transactions, 1998, 104(2):1213-1225
    [9] MARTIN H. Demand-controlled ventilation in vehicle parks[J]. Sense Air, 2001, 3:1-8
    [10] CHAO C Y H, HU J S. Development of a dual-mode demand control ventilation strategy for indoor air quality control and energy saving[J]. Building and Environment, 2004, 39(4): 385-397
    [11] 季海荣, 房艳兵, 宋天珩, 等. 人体室内外PM2.5吸入暴露研究[J]. 环境污染与防治, 2014, 36(9): 66-69,73
    [12] FERRO A R, KOPPERUD R J, HILDEMANN L M. Source strengths for indoor human activities that resuspend particulate matter[J]. Environmental Science & Technology, 2004, 38(6): 1759-1764
    [13] 张少红, 于少华. PM2.5的来源、危害及防治措施研究. 环境科学与管理, 2014, 39(7):92-94
    [14] 程浩. 基于人员适应性的需求控制通风措施研究[D]. 重庆:重庆大学, 2012
    [15] THATCHER T L, LUNDEN M M, REVZAN K L, et al. A Concentration Rebound Method for Measuring Particle Penetration and Deposition in theIndoor Environment[J]. Aerosol Science and Technology, 2003, 37(11): 847-864
    [16] MARSIK T, JOHNSON R. HVAC air-quality model and its use to test a PM2.5 control strategy[J]. Building and Environment, 2008, 43(11): 1850-1857
    [17] 张本利. 基于运行能效比的空调系统节能研究[D]. 天津:天津大学, 2013
    [18] ASHRAE. ANSI/ASHRAE Standard 62.1-2010: Ventilation for acceptable Indoor Air Quality. Atlanta: 1791 Tullie Circle NE, 2010: 37
    [19] WU X M, APTE M G, BENNETT D H. Indoor particle levels in small- and medium-sized commercial buildings in California[J]. Environmental Science and Technology, 2012, 46(22): 12355-12363
    [20] QUANG T N, HE C, MORAWSKA L, et al. Influence of ventilation and filtration on indoor particle concentrations in urban office buildings[J]. Atmospheric Environment, 2013, 79: 41-52
    [21] WANG Y, HOPKE P K, CHALUPA D C, et al. Long-term characterization of indoor and outdoor ultrafine particles at a commercial building[J]. Environmental Science and Technology, 2010, 44(15): 5775-5780
    [22] HE C. Contribution from indoor sources to particle number and mass concentrations in residential houses[J]. Atmospheric Environment, 2004, 38(21): 3405-3415
  • 加载中
计量
  • 文章访问数:  1898
  • HTML全文浏览数:  1568
  • PDF下载数:  850
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-06-30
  • 刊出日期:  2017-07-06
吕晓慧, 张泠, 徐秀, 王喜良, 吴静. 基于室内PM2.5控制和节能的通风策略探讨[J]. 环境工程学报, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062
引用本文: 吕晓慧, 张泠, 徐秀, 王喜良, 吴静. 基于室内PM2.5控制和节能的通风策略探讨[J]. 环境工程学报, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062
LYU Xiaohui, ZHANG Ling, XU Xiu, WANG Xiliang, WU Jing. Ventilation strategies based on PM2.5 and energy-saving[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062
Citation: LYU Xiaohui, ZHANG Ling, XU Xiu, WANG Xiliang, WU Jing. Ventilation strategies based on PM2.5 and energy-saving[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4169-4175. doi: 10.12030/j.cjee.201605062

基于室内PM2.5控制和节能的通风策略探讨

  • 1. 湖南大学土木工程学院, 长沙 410082
基金项目:

国家自然科学基金资助项目(51578221)

摘要: 细颗粒物(PM2.5)随空调新风进入室内,和室内产生的PM2.5粒子一起作用,导致人体暴露在室内细颗粒物环境中。为保证室内空气品质,最大限度节约空调系统运行能耗,建立了室内PM2.5浓度与CO2体积分数双组分模型,提出了适用于某会议室不同室内外PM2.5源、不同人数以及不同天气状况下的最佳通风策略,利用Simulink对炎热天气室内有无PM2.5散发源、温和天气室内有无PM2.5散发源4种工况下的不同通风方式进行仿真对比。模拟结果表明:炎热天气存在最小新风量,该值由室内人数决定,过滤送风对控制室内PM2.5浓度效果最好;温和天气存在最大新风量,且该值与过滤器效率成正比;在所研究的情况下,温和天气节能潜力比炎热天气大。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回