铁电极活化过硫酸盐对金橙G的降解

施周, 毕晨, 周石庆, 卜令君. 铁电极活化过硫酸盐对金橙G的降解[J]. 环境工程学报, 2017, 11(3): 1335-1340. doi: 10.12030/j.cjee.201511172
引用本文: 施周, 毕晨, 周石庆, 卜令君. 铁电极活化过硫酸盐对金橙G的降解[J]. 环境工程学报, 2017, 11(3): 1335-1340. doi: 10.12030/j.cjee.201511172
SHI Zhou, BI Chen, ZHOU Shiqing, BU Lingjun. Degradation of iron electrode as sodium persulfate activator for orange G[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1335-1340. doi: 10.12030/j.cjee.201511172
Citation: SHI Zhou, BI Chen, ZHOU Shiqing, BU Lingjun. Degradation of iron electrode as sodium persulfate activator for orange G[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1335-1340. doi: 10.12030/j.cjee.201511172

铁电极活化过硫酸盐对金橙G的降解

  • 基金项目:

    国家科技支撑计划资助项目(2012BAJ24B03)

  • 中图分类号: X703

Degradation of iron electrode as sodium persulfate activator for orange G

  • Fund Project:
  • 摘要: 研究了铁电极活化过硫酸盐(EC/PDS)产生的具有强氧化性的硫酸根自由基(SO4-·)对溶液中金橙G(orange G,OG)的氧化降解行为。重点考察了电流强度、PDS投加量、金橙G初始浓度、溶液初始pH值以及共存阴离子对金橙G降解速率的影响。实验结果表明:相比单独絮凝(EC)和投加过硫酸盐(PDS),EC/PDS体系能够有效地去除金橙G;金橙G的去除效率随着电流强度的增大而增大,随着PDS投加量的增大而增大,随着金橙G初始浓度增大而减小;较低的溶液pH值更利于OG的降解。水中共存阴离子对金橙G的降解存在着不同程度的抑制作用:PO43- > CO32- > Cl-。此外,通过加入不同的淬灭剂(甲醇和叔丁醇),确定了体系中主要存在的自由基。
  • 加载中
  • [1] 张斌, 刘金海, 冯晓辉. 印染废水污染现状及其处理技术的发展[J]. 科技信息, 2011(5):376-377
    [2] SZYGUŁA A, GUIBAL E, RUIZ M, et al. The removal of sulphonated azo-dyes by coagulation with chitosan[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008, 330(2/3):219-226
    [3] RAMAKRISHNA K R, VIRARAGHAVAN T. Dye removal using low cost adsorbents[J]. Water Science and Technology, 1997, 36(2/3):189-196
    [4] MAJEWSKA-NOWAK K, WINNICKI T, WIS'NIEWSKI J. Effect of flow conditions on ultrafiltration efficiency of dye solutions and textile effluents[J]. Desalination, 1989, 71(2):127-135
    [5] XU Xiangrong, LI Xiangzhong. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion[J]. Separation and Purification Technology, 2010, 72(1):105-111
    [6] LIANG Chenju, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223
    [7] JOHNSON R L, TRATNYEK P G, JOHNSON R O B. Persulfate persistence under thermal activation conditions[J]. Environmental Science & Technology, 2008, 42(24):9350-9356
    [8] FANG Jingyun, SHANG C. Bromate formation from bromide oxidation by the UV/persulfate process[J]. Environmental Science & Technology, 2012, 46(16):8976-8983
    [9] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13):3705-3712
    [10] 杨梅梅, 周少奇, 刘聃, 等. 活性炭催化过硫酸钠降解金橙G动力学[J]. 环境科学, 2013, 34(3):962-967
    [11] 占昌朝, 陈义, 严平, 等. 微波促进Fe@MCM-48催化K2S2O8降解甲基橙废水[J]. 环境工程学报, 2015, 9(7):3134-3140
    [12] HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1962, 62(3):185-203
    [13] ZUO Zhihua, CAI Zhongli, KATSUMURA Y, et al. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants[J]. Radiation Physics and Chemistry, 1999, 55(1):15-23
    [14] MILLERO F J, SOTOLONGO S, IZAGUIRRE M. The oxidation kinetics of Fe(Ⅱ)in seawater[J]. Geochimica et Cosmochimica Acta, 1987, 51(4):793-801
    [15] SMITH R M, MARTELL A E. Critical Stability Constants[M]. New York:Plenum Press, 1974
    [16] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284
    [17] STUMM W, MORGAN J J. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters[M]. New York:John Wiley & Sons, 1996
    [18] GAO Shanshan, DU Mao'an, TIAN Jiayu, et al. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal[J]. Journal of Hazardous Materials, 2010, 182(1/2/3):827-834
    [19] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886
  • 加载中
计量
  • 文章访问数:  2348
  • HTML全文浏览数:  1669
  • PDF下载数:  463
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-29
  • 刊出日期:  2017-03-10

铁电极活化过硫酸盐对金橙G的降解

  • 1.  湖南大学土木工程学院, 长沙 410082
  • 2.  湖南大学建筑安全与节能教育部重点实验室, 长沙 410082
基金项目:

国家科技支撑计划资助项目(2012BAJ24B03)

摘要: 研究了铁电极活化过硫酸盐(EC/PDS)产生的具有强氧化性的硫酸根自由基(SO4-·)对溶液中金橙G(orange G,OG)的氧化降解行为。重点考察了电流强度、PDS投加量、金橙G初始浓度、溶液初始pH值以及共存阴离子对金橙G降解速率的影响。实验结果表明:相比单独絮凝(EC)和投加过硫酸盐(PDS),EC/PDS体系能够有效地去除金橙G;金橙G的去除效率随着电流强度的增大而增大,随着PDS投加量的增大而增大,随着金橙G初始浓度增大而减小;较低的溶液pH值更利于OG的降解。水中共存阴离子对金橙G的降解存在着不同程度的抑制作用:PO43- > CO32- > Cl-。此外,通过加入不同的淬灭剂(甲醇和叔丁醇),确定了体系中主要存在的自由基。

English Abstract

参考文献 (19)

目录

/

返回文章
返回