生物炭携载纳米零价铁对溶液中Cr(VI)的去除

薛嵩, 钱林波, 晏井春, 高卫国, 陈梦舫, 曹志强, 施维林. 生物炭携载纳米零价铁对溶液中Cr(VI)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
引用本文: 薛嵩, 钱林波, 晏井春, 高卫国, 陈梦舫, 曹志强, 施维林. 生物炭携载纳米零价铁对溶液中Cr(VI)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
Xue Song, Qian Linbo, Yan Jingchun, Gao Weiguo, Chen Mengfang, Cao Zhiqiang, Shi Weinlin. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
Citation: Xue Song, Qian Linbo, Yan Jingchun, Gao Weiguo, Chen Mengfang, Cao Zhiqiang, Shi Weinlin. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155

生物炭携载纳米零价铁对溶液中Cr(VI)的去除

  • 基金项目:

    国家自然科学基金资助项目(31570515)

    江苏高校水处理技术与材料协同创新项目

    苏州市科技支撑计划项目(SS201421, SS201523)

    江苏省研究生科研创新计划项目(CXLX13_85)

  • 中图分类号: X703

Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron

  • Fund Project:
  • 摘要: 利用液相还原法,使生物炭携载纳米零价铁,可以有效解决纳米零价铁在水处理应用中自身团聚问题,从而提高Cr(VI)的去除效率。研究发现:在添加相同剂量纳米的条件下,当炭铁质量比为5:1时,生物炭携载纳米零价铁对溶液中Cr(VI)的去除率可达到96.8%,比纯纳米零价铁去除Cr(VI)的效率高35.9%;TEM和BET分析表明,生物炭携载纳米零价铁比纯纳米零价铁有更好的分散性和更高的比表面积,这是其去除Cr(VI)效果更好的主要原因;当溶液中Cr(VI)的反应初始浓度从25 mg/L提升至125 mg/L时,表观速率常数kobs从0.104 1 min-1降低至0.023 5 min-1,说明反应速率随着Cr(VI)初始浓度的增大而降低;当反应溶液初始pH在4.5~8.5之间时,携载纳米零价铁的生物炭对溶液中Cr(VI)的去除率均达到92.1%以上,表明生物炭携载纳米零价铁具有较广的pH适应范围,且对Cr(VI)具有较好的去除效果。
  • 加载中
  • [1] 李钰婷, 张亚雷, 代朝猛, 等. 纳米零价铁颗粒去除水中重金属的研究进展. 环境化学, 2012, 31(9): 1349-1354 Li Yuting, Zhang Yalei, Dai Chaomeng, et al. The advance on removal of heavy metals in water by nanoscale zero-valent iron. Environmental Chemistry, 2012, 31(9): 1349-1354(in Chinese)
    [2] 张鑫. 纳米零价铁去除水中重金属离子的研究进展. 化学研究, 2010, 21(3): 97-100 Zhang Xin. Research progress on removal of heavy metal ions from aqueous solution by nanoscale zero-valent iron. Chemical Research, 2010, 21(3): 97-100(in Chinese)
    [3] 武甲, 田秀君, 王锦, 等. 应用纳米零价铁处理模拟含Cr(Ⅵ)无氧地下水. 环境科学, 2010, 31(3): 645-652 Wu Jia, Tian Xiujun, Wang Jin, et al. Treatment of Cr (VI) in deoxygenated simulated groundwater using nanoscale zero-valent iron. Environmental Science, 2010, 31(3): 645-652(in Chinese)
    [4] Quan Guixiang, Zhang Jing, Guo Jing, et al. Removal of Cr(VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite. Water, Air, & Soil Pollution, 2014, 225(6): 1979
    [5] 徐佳丽. 蒙脱石负载纳米零价铁对水溶液中铀的去除研究. 武汉: 中国地质大学博士学位论文, 2014 Xu Jiali. Removal of uranium from aqueous solution using montmorillonite-supported zero-valent iron nanoparticles. Wuhan: Doctor Dissertation of China University of Geosciences, 2014(in Chinese)
    [6] 晏长成, 陈维芳, 潘玲, 等. 膨润土负载纳米零价铁去除水中铅的研究. 水资源与水工程学报, 2013, 24(6): 20-24 Yan Changcheng, Chen Weifang, Pan Ling, et al. Removal of lead in water by nano zero valent iron loaded on bentonite. Journal of Water Resources & Water Engineering, 2013, 24(6): 20-24(in Chinese)
    [7] 周娟娟, 李战军. 活性炭/纳米零价铁复合吸附剂的制备及对砷的去除应用. 环境科学与管理, 2012, 37(10): 106-108 Zhou Juanjuan, Li Zhanjun, et al. Preparation of activated carbon/nano zero-valent iron hybrid absorbents and its application in as removal. Environmental Science and Management, 2012, 37(10): 106-108(in Chinese)
    [8] 赵秋芳, 赵青云, 王辉, 等. 生物炭改良土壤机理及其在我国热区应用前景综述. 热带农业科学, 2014, 34(10): 53-57 Zhao Qiufang, Zhao Qingyun, Wang Hui, et al. Review of biochar soil improvement mechanism and the application prospect in our country tropical area. Chinese Journal of Tropical Agriculture, 2014, 34(10): 53-57(in Chinese)
    [9] Zhou Yanmei, Gao Bin, Zimmerman A. R., et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 2014, 152: 538-542
    [10] Arh B., Vode F., Tehovnik F., et al. Reduction of chromium oxides with calcium carbide during the stainless steelmaking process. Metalurgija, 2015, 54(2): 368-370
    [11] Avila M., Burks T., Akhtar F., et al. Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions. Chemical Engineering Journal, 2014, 245: 201-209
    [12] Wang Yu, Fang Zhanqiang, Liang Bin, et al. Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor. Chemical Engineering Journal, 2014, 247: 283-290
    [13] Jabeen H., Chandra V., Jung S., et al. Enhanced Cr (VI) removal using iron nanoparticle decorated graphene. Nanoscale, 2011, 3(9): 3583-3585
    [14] Liu Zhengang, Zhang Fushen, Wu Jianzhi. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 2010, 89(2): 510-514
    [15] Yan Jingchun, Han Lu, Gao Weiguo, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresource Technology, 2015, 175: 269-274
    [16] Wang Qiliang, Snyder S., Kim J., et al. Aqueous Ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity. Environmental Science & Technology, 2009, 43(9): 3292-3299
    [17] Wang Xiangyu, Chen Chao, Liu Huiling, et al. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Industrial & Engineering Chemistry Research, 2008, 47(22): 8645-8651
    [18] Dai Zhongmin, Meng Jun, Muhammad N., et al. The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. Journal of Soils and Sediments, 2013, 13(6): 989-1000
    [19] 曲振平, 唐小兰, 李新勇, 等. 磺化碳材料固载Fe2+催化甲基橙降解反应. 催化学报, 2009, 30(2): 142-146 Qu Zhenping, Tang Xiaolan, Li Xinyong, et al. Degradation of methyl orange over Fe2+ activated sulphonated carbon catalyst. Chinese Journal of Catalysis, 2009, 30(2): 142-146(in Chinese)
    [20] Liang B., Lehmann J., Solomon D., et al. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 2006, 70(5): 1719-1730
    [21] Chen Jiajia, Zhu Jiaxiang, Da Zulin, et al. Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites. Applied Surface Science, 2014, 313: 1-9
    [22] Chen Zhengxian, Cheng Ying, Chen Zuliang, et al. Kaolin-supported nanoscale zero-valent iron for removing cationic dye-crystal violet in aqueous solution. Journal of Nanoparticle Research, 2012, 14(8): 899
    [23] Zhu Huijie, Jia Yongfeng, Wu Xing, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 2009, 172(2-3): 1591-1596
    [24] Venkatapathy R., Bessingpas D. G., Canonica S., et al. Kinetics models for trichloroethylene transformation by zero-valent iron. Applied Catalysis B: Environmental, 2002, 37(2): 139-159
    [25] 赵凌曦. 固-液界面吸附中的吸附剂浓度效应研究. 济南: 山东大学博士学位论文, 2013 Zhao Lingxi. Sorbent concentration effect on adsorption phenomenon at solid-liquid interface. Jinan: Doctor Dissertation of Shandong University, 2013(in Chinese)
    [26] Melitas N., Wang Jianping, Conklin M., et al. Understanding soluble arsenate removal kinetics by zerovalent iron media. Environmental Science & Technology, 2002, 36(9): 2074-2081
    [27] Li Xiaoqin, Cao Jiasheng, Zhang Weixian. Stoichiometry of Cr (VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139
    [28] Fan Jing, Guo Yanhui, Wang Jianji, et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 2009, 166(2-3): 904-910
    [29] Liou Y. H., Lo S. L., Lin C. J., et al. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of Hazardous Materials, 2005, 127(1-3): 102-110
  • 加载中
计量
  • 文章访问数:  2566
  • HTML全文浏览数:  1829
  • PDF下载数:  749
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-28
  • 刊出日期:  2016-06-03
薛嵩, 钱林波, 晏井春, 高卫国, 陈梦舫, 曹志强, 施维林. 生物炭携载纳米零价铁对溶液中Cr(VI)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
引用本文: 薛嵩, 钱林波, 晏井春, 高卫国, 陈梦舫, 曹志强, 施维林. 生物炭携载纳米零价铁对溶液中Cr(VI)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
Xue Song, Qian Linbo, Yan Jingchun, Gao Weiguo, Chen Mengfang, Cao Zhiqiang, Shi Weinlin. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155
Citation: Xue Song, Qian Linbo, Yan Jingchun, Gao Weiguo, Chen Mengfang, Cao Zhiqiang, Shi Weinlin. Removal of Cr(VI) from aqueous using biochar carried nanoscal zero-velent iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2895-2901. doi: 10.12030/j.cjee.201501155

生物炭携载纳米零价铁对溶液中Cr(VI)的去除

  • 1.  苏州科技学院环境科学与工程学院, 苏州 215009
  • 2.  中国科学院南京土壤研究所, 中国科学院土壤环境与污染修复重点实验室, 南京 210008
基金项目:

国家自然科学基金资助项目(31570515)

江苏高校水处理技术与材料协同创新项目

苏州市科技支撑计划项目(SS201421, SS201523)

江苏省研究生科研创新计划项目(CXLX13_85)

摘要: 利用液相还原法,使生物炭携载纳米零价铁,可以有效解决纳米零价铁在水处理应用中自身团聚问题,从而提高Cr(VI)的去除效率。研究发现:在添加相同剂量纳米的条件下,当炭铁质量比为5:1时,生物炭携载纳米零价铁对溶液中Cr(VI)的去除率可达到96.8%,比纯纳米零价铁去除Cr(VI)的效率高35.9%;TEM和BET分析表明,生物炭携载纳米零价铁比纯纳米零价铁有更好的分散性和更高的比表面积,这是其去除Cr(VI)效果更好的主要原因;当溶液中Cr(VI)的反应初始浓度从25 mg/L提升至125 mg/L时,表观速率常数kobs从0.104 1 min-1降低至0.023 5 min-1,说明反应速率随着Cr(VI)初始浓度的增大而降低;当反应溶液初始pH在4.5~8.5之间时,携载纳米零价铁的生物炭对溶液中Cr(VI)的去除率均达到92.1%以上,表明生物炭携载纳米零价铁具有较广的pH适应范围,且对Cr(VI)具有较好的去除效果。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回