以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素

苗志加, 李宁, 高会杰, 赵俊娜, 黄娟, 李再兴. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素[J]. 环境工程学报, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094
引用本文: 苗志加, 李宁, 高会杰, 赵俊娜, 黄娟, 李再兴. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素[J]. 环境工程学报, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094
Miao Zhijia, Li Ning, Gao Huijie, Zhao Junna, Huang Juan, Li Zaixing. Influencing factors of N2O accumulation in process of denitrifying phosphorus removal with nitrite as electron acceptor[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094
Citation: Miao Zhijia, Li Ning, Gao Huijie, Zhao Junna, Huang Juan, Li Zaixing. Influencing factors of N2O accumulation in process of denitrifying phosphorus removal with nitrite as electron acceptor[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094

以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素

  • 基金项目:

    国家科技支撑计划课题资助项目(2013BAJ10B09-3)

    河北省高等学校科学技术研究青年基金资助项目(QN2014037)

    石家庄经济学院博士科研启动基金项目

    河北省自然科学基金青年科学基金项目(E2016403035)

  • 中图分类号: X703

Influencing factors of N2O accumulation in process of denitrifying phosphorus removal with nitrite as electron acceptor

  • Fund Project:
  • 摘要: 接种稳定运行140 d的反硝化除磷污泥,通过批次实验,研究了亚硝态氮投加方式、进水COD浓度和pH对反硝化除磷过程N2O代谢的影响。结果表明,60 mg/L的亚硝态氮均分3次投加与1次投加相比,系统内N2O最大积累量从14.23 mg/L降低为2.90 mg/L,经缺氧吸磷后N2O剩余量由8.20 mg/L降低至0.02 mg/L,表明多次投加亚硝态氮可有效避免N2O的积累。当初始进水COD浓度为150、300和450 mg/L时,经3 h缺氧代谢后出水中N2O剩余量分别为11.70和7.59、4.77 mg/L,较高进水COD浓度可有效降低N2O的产量。不同pH值的实验结果表明,较高pH可促进N2O的代谢,并最终减少N2O的产生量。
  • 加载中
  • [1] Fulweiler R. W., Rabalais N. N., Heiskanen A. S. The eutrophication commandments. Marine Pollution Bulletin, 2012, 64(10): 1997-1999
    [2] 孙晓杰, 王嘉捷, 赵孝芹, 等. 我国城市污水厂推行一级A标提标改造探讨. 环境工程, 2013, 31(6): 12-15 Sun Xiaojie, Wang Jiajie, Zhao Xiaoqin, et al. Discussion on upgrading reconstruction of municipal wastewater treatment plant in China. Environmental Engineering, 2013, 31(6): 12-15(in Chinese)
    [3] 徐瑛,徐祥,陈宇,等.无锡主城区污水厂升级改造脱氮除磷与污泥产量分析. 中国给水排水, 2012, 28(10): 32-35 Xu Ying, Xu Xiang, Chen Yu, et al. Analysis of Nitrogen and Phosphorus removal and sludge yield in upgrading and reconstruction of WWTPs in Wuxi main city zone. China Water & Wastewater, 2012, 28(10): 32-35(in Chinese)
    [4] Zheng Xiongliu, Sun Peide, Han Jingyi, et al. Inhibitory factors affecting the process of enhanced biological phosphorus removal (EBPR): A mini-review. Process Biochemistry, 2014, 49(12): 2207-2213
    [5] 王亚宜. 反硝化除磷脱氮机理及工艺研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2004 Wang Yayi. The mechanism and processes study on denitrifying phosphorus removal. Harbin: Doctor Dissertation of Harbin Institute of Technology, 2004(in Chinese)
    [6] Wang Yayi, Guo Gang, Wang Hong, et al. Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems. Water Research, 2013, 47(14): 5326-5337
    [7] 史静, 吕锡武, 朱光灿, 等. 进水碳磷比对连续流反硝化除磷工艺脱氮除磷效果的影响. 东南大学学报(自然科学版), 2012, 42(1): 94-98 Shi Jing, Lü Xiwu, Zhu Guangcan, et al. Effect of COD-to-phosphorus ratio on performance of continuous-flow two-sludge process. Journal of Southeast University (Natural Science Edition), 2012, 42(1): 94-98(in Chinese)
    [8] 刘侃. 以亚硝酸盐为电子受体的反硝化除磷系统机理研究. 南宁: 广西大学硕士学位论文, 2013 Liu Kan. Study on the mechanism of the denitrifying phophorus removal system with nitrite as electron. Nanning: Master Dissertation of Guangxi University, 2013 (in Chinese)
    [9] Zeng Wei, Wang Xiangdong, Li Boxiao, et al. Nitritation and denitrifying phosphorus removal via nitrite pathway from domestic wastewater in a continuous MUCT process. Bioresource Technology, 2013, 143: 187-195
    [10] Hu J. Y., Ong S. L., Ng W. J., et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Research, 2003, 37(14): 3463-3471
    [11] Jabari P., Munz G., Oleszkiewicz J. A. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: Comparison of nitrite with nitrate as an electron acceptor. Chemosphere, 2014, 109: 20-27
    [12] Lee T. J., Kawaharasaki M., Matsumura M., et al. Microbial community structures of activated sludges dominated with polyphosphate-accumulating bacteria and glycogen-accumulating bacteria. Environmental Technology, 2002, 23(7): 747-755
    [13] Li Cong, Wang Ting, Zheng Nan, et al. Influence of organic shock loads on the production of N2O in denitrifying phosphorus removal process. Bioresource Technology, 2013, 141: 160-166
    [14] 李聪. 利用双污泥反硝化除磷工艺降低污水处理过程中N2O的产生. 济南: 山东大学博士学位论文, 2013 Li Cong. N2O reduction during wastewater treatment using a two-sludge denitrifying pnosphorus removal process. Ji'nan: Doctor Dissertation of Shandong University, 2013 (in Chinese)
    [15] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [16] Oehmen A., Keller-Lehmann B., Zeng R. J., et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography A, 2005, 1070(1-2): 131-136
    [17] Wang Yayi, Geng Junjun, Guo Gang, et al. N2O production in anaerobic/anoxic denitrifying phosphorus removal process: The effects of carbon sources shock. Chemical Engineering Journal, 2011, 172(2-3): 999-1007
    [18] 梁小玲,李平,吴锦华,等.短程同步硝化反硝化过程的脱氮与N2O释放特性.环境科学, 2013, 34(5): 1845-1850 Liang Xiaoling, Li Ping, Wu Jinhua, et al. Nitrogen removal and N2O emission characteristics during the shortcut simultaneous nitrification and denitrification process. Environmental Science, 2013, 34(5): 1845-1850(in Chinese)
    [19] Schalk-Otte S., Seviour R. J., Kuenen J. G., et al. Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Research, 2000, 34(7): 2080-2088
    [20] Zhou Yan, Pijuan M., Zeng R. J., et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environmental Science & Technology, 2008, 42(22): 8260-8265
    [21] Kishida N., Kim J., Tsuneda S., et al. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Water Research, 2006, 40(12): 2303-2310
    [22] Wang Yayi, Geng Junjun, Ren Zhongjia, et al. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production. Bioresource Technology, 2011, 102(10): 5674-5684
    [23] Zhou Yan, Ganda L., Lim M., et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs). Applied Microbiology and Biotechnology, 2010, 88(1): 359-369
  • 加载中
计量
  • 文章访问数:  2429
  • HTML全文浏览数:  1884
  • PDF下载数:  1102
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-01
  • 刊出日期:  2016-06-03
苗志加, 李宁, 高会杰, 赵俊娜, 黄娟, 李再兴. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素[J]. 环境工程学报, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094
引用本文: 苗志加, 李宁, 高会杰, 赵俊娜, 黄娟, 李再兴. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素[J]. 环境工程学报, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094
Miao Zhijia, Li Ning, Gao Huijie, Zhao Junna, Huang Juan, Li Zaixing. Influencing factors of N2O accumulation in process of denitrifying phosphorus removal with nitrite as electron acceptor[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094
Citation: Miao Zhijia, Li Ning, Gao Huijie, Zhao Junna, Huang Juan, Li Zaixing. Influencing factors of N2O accumulation in process of denitrifying phosphorus removal with nitrite as electron acceptor[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2807-2812. doi: 10.12030/j.cjee.201501094

以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素

  • 1. 石家庄经济学院水资源与环境学院, 石家庄 050031
  • 2. 河北科技大学环境科学与工程学院, 石家庄 050018
  • 3. 河北省石家庄市环境保护局, 石家庄 050021
基金项目:

国家科技支撑计划课题资助项目(2013BAJ10B09-3)

河北省高等学校科学技术研究青年基金资助项目(QN2014037)

石家庄经济学院博士科研启动基金项目

河北省自然科学基金青年科学基金项目(E2016403035)

摘要: 接种稳定运行140 d的反硝化除磷污泥,通过批次实验,研究了亚硝态氮投加方式、进水COD浓度和pH对反硝化除磷过程N2O代谢的影响。结果表明,60 mg/L的亚硝态氮均分3次投加与1次投加相比,系统内N2O最大积累量从14.23 mg/L降低为2.90 mg/L,经缺氧吸磷后N2O剩余量由8.20 mg/L降低至0.02 mg/L,表明多次投加亚硝态氮可有效避免N2O的积累。当初始进水COD浓度为150、300和450 mg/L时,经3 h缺氧代谢后出水中N2O剩余量分别为11.70和7.59、4.77 mg/L,较高进水COD浓度可有效降低N2O的产量。不同pH值的实验结果表明,较高pH可促进N2O的代谢,并最终减少N2O的产生量。

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回