锆、铁氧化物改性活性炭纤维的制备及其除磷性能

童婧, 杨朝晖, 曾光明, 熊炜平, 黄兢, 徐海音, 宋佩佩. 锆、铁氧化物改性活性炭纤维的制备及其除磷性能[J]. 环境工程学报, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044
引用本文: 童婧, 杨朝晖, 曾光明, 熊炜平, 黄兢, 徐海音, 宋佩佩. 锆、铁氧化物改性活性炭纤维的制备及其除磷性能[J]. 环境工程学报, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044
Tong Jing, Yang Zhaohui, Zeng Guangming, Xiong Weiping, Huang Jing, Xu Haiyin, Song Peipei. Preparation of hydroxyl-iron-zirconium modified activated carbon fieber and its phosphate removal performance[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044
Citation: Tong Jing, Yang Zhaohui, Zeng Guangming, Xiong Weiping, Huang Jing, Xu Haiyin, Song Peipei. Preparation of hydroxyl-iron-zirconium modified activated carbon fieber and its phosphate removal performance[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044

锆、铁氧化物改性活性炭纤维的制备及其除磷性能

  • 基金项目:

    国家自然科学基金资助项目(51378189)

  • 中图分类号: X524

Preparation of hydroxyl-iron-zirconium modified activated carbon fieber and its phosphate removal performance

  • Fund Project:
  • 摘要: 利用锆、铁氧化物对活性炭纤维进行改性,制备了一种新型高效除磷吸附剂——负载锆铁氧化物的活性炭纤维(ACF-ZrFe)。综合运用单因素实验与正交实验对吸附剂的制备条件进行优化,同时利用环境扫描电镜和傅里叶变换红外光谱分析对吸附剂表面性质及反应机理进行了探究。实验结果表明,ACF-ZrFe制备的最佳条件为:锆铁摩尔比7:3,浸渍液中锆铁总浓度0.1 mol/L,超声处理时间10 min。当pH为4时,ACF-ZrFe对磷的吸附效果最显著。NO3-、SO42-、F-和Cl-等共存阴离子对磷吸附有一定抑制作用,其作用强弱顺序为:F- > NO3- > Cl- > SO42-。Langmuir等温吸附模型很好地描述了ACF-ZrFe对水中磷的等温吸附行为,最大吸附量为27.03 mg/g,吸附动力学满足准二级动力学模型,表明化学吸附是该反应的主要限速步骤。红外光谱分析及pH影响实验表明,ACF-ZrFe吸附磷的主要机理为阴离子配位体交换和静电吸附。
  • [1] Conley D. J., Paerl H. W., Howarth R. W., et al. Controlling eutrophication: Nitrogen and phosphorus. Science, 2009, 323(5917): 1014-1015
    [2] Takeda I., Somura H., Mori Y. Recovery of phosphorus from natural water bodies using iron-oxidizing bacteria and woody biomass. Ecological Engineering, 2010, 36(8): 1064-1069
    [3] Li Zhenze, Tang Xiaowu, Chen Yunmin, et al. Behaviour and mechanism of enhanced phosphate sorption on loess modified with metals: Equilibrium study. Journal of Chemical Technology and Biotechnology, 2009, 84(4): 595-603
    [4] Long Fei, Gong Jilai, Zeng Guangming, et al. Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide. Chemical Engineering Journal, 2011, 171(2): 448-455
    [5] Wu Huayong, Jiang Daihua, Cai Peng, et al. Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces, 2011, 82(1): 147-151
    [6] Karaca S., Gürses A., Ejder M., et al. Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. Journal of Hazardous Materials, 2006, 128(2-3): 273-279
    [7] Shi Zhongliang, Liu Fumei, Yao Shuhua. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide. New Carbon Materials, 2011, 26(4): 299-306
    [8] Su Yu, Cui Hang, Li Qi, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 2013, 47(14): 5018-5026
    [9] Zheng Jieying, Zhao Quanlin, Ye Zhengfang, et al. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Applied Surface Science, 2014, 299: 86-91
    [10] 杨永珠, 江映翔, 赵李丽, 等. 铁-镧系合金氧化物污水除磷及再生. 环境工程学报, 2014, 8(1): 236-241 Yang Yongzhu, Jiang Yingxiang, Zhao Lili, et al. Phosphorous removal from wastewater by iron-lanthanum based alloy oxides and their regeneration. Chinese Journal of Environmental Engineering, 2014, 8(1): 236-241(in Chinese)
    [11] Zhang Ling, Wan Lihua, Chang Ning, et al. Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. Journal of Hazardous Materials, 2011, 190(1-3): 848-855
    [12] Zhou Qi, Wang Xinze, Liu Jianyong, et al. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol-Gel method. Chemical Engineering Journal, 2012, 200-202: 619-626
    [13] 马空军, 贾殿赠, 包文忠, 等. 超声场强化渗透脱水传质机理模型研究. 食品科学, 2011, 32(13): 94-110 Ma Kongjun, Jia Dianzeng, Bao Wenzhong, et al. Mass transfer mechanism and mathematical model for ultrasonic-enhanced osmotic dehydration. Food Science, 2011, 32(13): 94-110(in Chinese)
    [14] Liu Jiangyong, Zhou Qi, Chen Junhua, et al. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chemical Engineering Journal, 2013, 215-216: 859-867
    [15] Lin Yafen, Chen Huawei, Chen Yichen. Application of magnetite modified with polyacrylamide to adsorb phosphate in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(1): 45-51
    [16] 林建伟, 詹艳慧, 陆霞. 锆改性沸石对水中磷酸盐和铵的吸附特性. 中国环境科学, 2012, 32(11): 2023-2031 Lin Jianwei, Zhan Yanhui, Lu Xia. Adsorption of phosphate and ammonium from aqueous solution on zirconium modified zeolite. China Environmental Science, 2012, 32(11): 2023-2031(in Chinese)
    [17] Lü Jianbo, Liu Huijuan, Liu Ruiping, et al. Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent. Powder Technology, 2013, 233: 146-154
    [18] 朱格仙, 张建民, 王蓓. 活性炭负载氧化锆制备除磷吸附剂的最佳条件研究. 中国给水排水, 2008, 24(3): 79-81 Zhu Gexian, Zhang Jianmin, Wang Bei. Study on optimal preparation conditions of activated carbon loaded with zirconium oxide as phosphorus adsorbent. China Water & Wastewater, 2008, 24(3): 79-81(in Chinese)
    [19] Zeng Le, Li Xiaomei, Liu Jindun. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 2004, 38(5): 1318-1326
    [20] Yang Jiao, Zeng Qingru, Peng Liang, et al. La-EDTA coated Fe3O4 nanomaterial: Preparation and application in removal of phosphate from water. Journal of Environmental Sciences, 2013, 25(2): 413-418
    [21] Sousa A. F., Braga T. P., Gomes E. C., et al. Adsorption of phosphate using mesoporous spheres containing iron and aluminum oxide. Chemical Engineering Journal, 2012, 210: 143-149
    [22] Cui Hang, Li Qi, Gao Shi'an, et al. Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1418-1427
    [23] Rao R. A. K., Singh S., Singh B. R., et al. Synthesis and characterization of surface modified graphene-zirconium oxide nanocomposite and its possible use for the removal of chlorophenol from aqueous solution. Journal of Environmental Chemical Engineering, 2014, 2(1): 199-210
    [24] Zhang Jiada, Shen Zhemin, Shan Wenpo, et al. Adsorption behavior of phosphate on Lanthanum (III) doped mesoporous silicates material. Journal of Environmental Sciences, 2010, 22(4): 507-511
  • 期刊类型引用(14)

    1. 刘培森,张盼盼,谭胜金,李延君,刘世恒,程启鹏,束维正,徐刚,熊启中,叶新新. 铁氧化物复合纤维的制备及其去除磷酸盐的性能研究. 安徽农业大学学报. 2025(01): 63-71 . 百度学术
    2. 龙萌,王振华,李青云,李冠亚,陈浩,胡艳平,朱引. 除氮菌剂强化碳纤维的挂膜与脱氮效果. 长江科学院院报. 2022(03): 47-53 . 百度学术
    3. 李叶,张浩,朱瑞雪,李小宇. 石墨-活性炭复合电极对含磷废水处理的研究. 化工管理. 2022(19): 78-81 . 百度学术
    4. 范旭腾,张彦平,李一兵,赵祺佳. 给水污泥酸提液改性活性炭纤维吸附磷性能的研究. 工业水处理. 2022(10): 97-103 . 百度学术
    5. 刘艳芳,高玮,尹思婕,刘晓帅,张妙雨,娄晓月,李再兴. 铁、锆改性生物炭对水中磷的吸附特性及机理研究. 工业水处理. 2022(11): 153-161 . 百度学术
    6. 吕晴,秦军,刘江,邱学剑,杨靖,陈梦瑜. 磷石膏制备超微细硫酸钙晶须的除磷特性研究. 应用化工. 2020(08): 2018-2023+2044 . 百度学术
    7. 吴梦,张大超,徐师,陈敏,王春英. 废水除磷工艺技术研究进展. 有色金属科学与工程. 2019(02): 97-103 . 百度学术
    8. 付超,宋怡明,周子敏,徐进. 含磷污水治理技术研究现状与进展. 广州化工. 2019(12): 31-33 . 百度学术
    9. 刘君,邱敬贤,梁凤仪,乔瑞平. 除磷剂在废水处理过程中的研究进展. 再生资源与循环经济. 2019(09): 42-44 . 百度学术
    10. 杜妍,吴丽瑞,聂广泽,孟朔,凌焰,郭逸帆,陈蕾. 载锆活性炭吸附水中对硝基苯酚和磷的研究. 环境污染与防治. 2019(11): 1266-1272 . 百度学术
    11. 张莹,张程,谭琲琳,张梦娇,王生丽,王莉淋. 3种表面修饰活性炭对水体中磷的吸附. 环境工程学报. 2018(05): 1346-1354 . 本站查看
    12. 陈旭,梁美娜,王敦球,黎燕,秦艳敏,黎森. 桑树杆活性炭/铁锰氧化物复合吸附剂对磷的吸附研究. 工业安全与环保. 2018(12): 74-78+90 . 百度学术
    13. 万霞,梅昌艮,何俐臻,贺玉龙,袁基刚,王成端. 磁性生物炭的制备、表征及对磷的吸附特性. 安全与环境学报. 2017(03): 1069-1075 . 百度学术
    14. 龚丽影,赵如金,李一晖,刘巧,朱海东,杨启志,陆军. ACF-FBBR处理城市生活污水的研究. 工业水处理. 2017(11): 38-42 . 百度学术

    其他类型引用(22)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.1 %DOWNLOAD: 3.1 %FULLTEXT: 82.4 %FULLTEXT: 82.4 %META: 14.5 %META: 14.5 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.5 %其他: 81.5 %Ashburn: 3.3 %Ashburn: 3.3 %Beijing: 3.5 %Beijing: 3.5 %Dongguan: 0.4 %Dongguan: 0.4 %Goiânia: 0.4 %Goiânia: 0.4 %Hangzhou: 0.4 %Hangzhou: 0.4 %Hengyang: 0.4 %Hengyang: 0.4 %Mountain View: 1.3 %Mountain View: 1.3 %Newark: 2.2 %Newark: 2.2 %Shanghai: 0.4 %Shanghai: 0.4 %Shijiazhuang: 0.2 %Shijiazhuang: 0.2 %Tan Phu Thuong: 0.4 %Tan Phu Thuong: 0.4 %Xingfeng: 0.9 %Xingfeng: 0.9 %XX: 2.0 %XX: 2.0 %Yuncheng: 0.2 %Yuncheng: 0.2 %上海: 0.2 %上海: 0.2 %北海: 0.2 %北海: 0.2 %常州: 0.4 %常州: 0.4 %贵阳: 0.2 %贵阳: 0.2 %郑州: 1.1 %郑州: 1.1 %其他AshburnBeijingDongguanGoiâniaHangzhouHengyangMountain ViewNewarkShanghaiShijiazhuangTan Phu ThuongXingfengXXYuncheng上海北海常州贵阳郑州Highcharts.com
计量
  • 文章访问数:  2622
  • HTML全文浏览数:  2000
  • PDF下载数:  848
  • 施引文献:  36
出版历程
  • 收稿日期:  2015-05-14
  • 刊出日期:  2016-06-03
童婧, 杨朝晖, 曾光明, 熊炜平, 黄兢, 徐海音, 宋佩佩. 锆、铁氧化物改性活性炭纤维的制备及其除磷性能[J]. 环境工程学报, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044
引用本文: 童婧, 杨朝晖, 曾光明, 熊炜平, 黄兢, 徐海音, 宋佩佩. 锆、铁氧化物改性活性炭纤维的制备及其除磷性能[J]. 环境工程学报, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044
Tong Jing, Yang Zhaohui, Zeng Guangming, Xiong Weiping, Huang Jing, Xu Haiyin, Song Peipei. Preparation of hydroxyl-iron-zirconium modified activated carbon fieber and its phosphate removal performance[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044
Citation: Tong Jing, Yang Zhaohui, Zeng Guangming, Xiong Weiping, Huang Jing, Xu Haiyin, Song Peipei. Preparation of hydroxyl-iron-zirconium modified activated carbon fieber and its phosphate removal performance[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2881-2888. doi: 10.12030/j.cjee.201501044

锆、铁氧化物改性活性炭纤维的制备及其除磷性能

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:

国家自然科学基金资助项目(51378189)

摘要: 利用锆、铁氧化物对活性炭纤维进行改性,制备了一种新型高效除磷吸附剂——负载锆铁氧化物的活性炭纤维(ACF-ZrFe)。综合运用单因素实验与正交实验对吸附剂的制备条件进行优化,同时利用环境扫描电镜和傅里叶变换红外光谱分析对吸附剂表面性质及反应机理进行了探究。实验结果表明,ACF-ZrFe制备的最佳条件为:锆铁摩尔比7:3,浸渍液中锆铁总浓度0.1 mol/L,超声处理时间10 min。当pH为4时,ACF-ZrFe对磷的吸附效果最显著。NO3-、SO42-、F-和Cl-等共存阴离子对磷吸附有一定抑制作用,其作用强弱顺序为:F- > NO3- > Cl- > SO42-。Langmuir等温吸附模型很好地描述了ACF-ZrFe对水中磷的等温吸附行为,最大吸附量为27.03 mg/g,吸附动力学满足准二级动力学模型,表明化学吸附是该反应的主要限速步骤。红外光谱分析及pH影响实验表明,ACF-ZrFe吸附磷的主要机理为阴离子配位体交换和静电吸附。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回