垂直流人工湿地启动期基质酶的时空变化

许巧玲, 王小毛, 黄柱坚, 余光伟, 崔理华. 垂直流人工湿地启动期基质酶的时空变化[J]. 环境工程学报, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117
引用本文: 许巧玲, 王小毛, 黄柱坚, 余光伟, 崔理华. 垂直流人工湿地启动期基质酶的时空变化[J]. 环境工程学报, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117
Xu Qiaoling, Wang Xiaomao, Huang Zhujian, Yu Guangwei, Cui Lihua. Spatial distribution of substrate enzyme in the vertical flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117
Citation: Xu Qiaoling, Wang Xiaomao, Huang Zhujian, Yu Guangwei, Cui Lihua. Spatial distribution of substrate enzyme in the vertical flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117

垂直流人工湿地启动期基质酶的时空变化

  • 基金项目:

    国家自然科学基金资助项目(41271245,41071214)

    广东省科技计划项目(2012A020100003)

    广东省教育厅广东高校污水生态处理与水体修复工程技术研究中心建设项目(2012gczxA1004)

  • 中图分类号: X703

Spatial distribution of substrate enzyme in the vertical flow constructed wetland

  • Fund Project:
  • 摘要: 为了解垂直流人工湿地系统中基质酶在去污效果中的作用及其随基质深度和运行时间的变化规律,设置3个垂直流人工湿地系统:种植皇竹草的A系统,种植象草的B系统,以及不种植物的C系统。分别监测3个系统不同基质深度与不同运行时间条件下脲酶、磷酸酶、过氧化氢酶、转化酶和纤维素酶的变化规律,以及这几种酶与TN、TP、COD、NH4+-N 和NO3--N污染物之间的相关性。实验结果表明,上述5种酶都表现出随着基质深度增加而减少的趋势,且上层0~30 cm处的基质酶活性极显著高于中层和底层的酶活性,此外,种植能源植物的A、B系统基质酶活性都高于不种植物C系统,说明湿地中污染物的去除主要集中在上层基质,种植能源植物能够有效促进微生物的活性,增加胞外酶的分泌,提高人工湿地对污染物的去除效果,可为优化人工湿地除污效果以及湿地植物的选择提供理论依据。
  • [1] Martin C.D.,Moshiri G.A.Nutrient reduction in an in-series constructed wetland system treating landfill leachate.Water Science and Technology,1994,29(4):267-272
    [2] Birch G.F.,Matthai C.,Fazeli M.S.,et al.Efficiency of a constructed wetland in removing contaminants from stormwater.Wetlands,2004,24(2):459-466
    [3] Vymazal J.Removal of nutrients in various types of constructed wetlands.Science of the Total Environment,2007,380(1-3):48-65
    [4] Cui Lihua,Ouyang Ying,Lou Qian,et al.Removal of nutrients from wastewater with Canna indica L.under different vertical-flow constructed wetland conditions.Ecological Engineering,2010,36(8):1083-1088
    [5] Yan Yijing,Xu Jingcheng.Improving winter performance of constructed wetlands for wastewater treatment in Northern China:A review.Wetlands,2014,34(2):243-253
    [6] Brix H.Wastewater treatment in constructed wetlands:System design,removal processes,and treatment performance//Moshiri G.A.,ed.Constructed Wetlands for Water Quality Improvement.London:Lewis Publishers,Boca Raton,1993:9-22
    [7] Fan Jinlin,Liang Shuang,Zhang Bo,et al.Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy.Environmental Science and Pollution Research,2013,20(4):2448-2455
    [8] Brisson J.,Chazarenc F.Maximizing pollutant removal in constructed wetlands:Should we pay more attention to macrophyte species selection?Science of the Total Environment,2009,407(13):3923-3930
    [9] Liang Wei,Wu Zhenbin,Cheng Shuiping,et al.Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system.Ecological Engineering,2003,21(2-3):191-195
    [10] Stottmeister U.,Wieβner A.,Kuschk P.,et al.Effects of plants and microorganisms in constructed wetlands for wastewater treatment.Biotechnology Advances,2003,22(1-2):93-117
    [11] Burns R.G.Enzyme activity in soil:Location and a possible role in microbial ecology.Soil Biology and Biochemistry,1982,14(5):423-427
    [12] Shackle V.,Freeman C.,Reynolds B.Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands.Science of the Total Environment,2006,361(1-3):18-24
    [13] Menon R.,Jackson C.R.,Holland M.M.The Influence of vegetation on microbial enzyme activity and bacterial community structure in freshwater constructed wetland sediments.Wetlands,2013,33(2):365-378
    [14] Peralta R.M.,Ahn C.,Gillevet P.M.Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands.Science of the Total Environment,2013,443:725-732
    [15] 国家环境保护总局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002
    [16] 关松荫.土壤酶及其研究方法.北京:农业出版社,1986
    [17] 蔡祖凯.氮沉降对杉木人工林土壤有机质含量及纤维素酶活性的影响.福州:福建农林大学硕士学位论文,2010 Cai Zukai.Impacts of nitrogen deposition on soil carbon content and activity of soil cellulase enzymes in the chinese fir plantation.Fuzhou:Master Dissertation of Fujian Agriculture and Forestry University,2010(in Chinese)
    [18] Aon M.A.,Colaneri A.C.Ⅱ.Temporal and spatial evolution of enzymatic activitie潳甠牡湮慤氠?潨晹?卩潣楯氭?慨湥摭?坣慡瑬攠牰??潰湥獲整物癥慳琠楩潮渠????????????????????椮湁??桬楩湥敤猠敓?il Ecology,2001,18(3):255-270
    [19] Niemi R.M.,Vepslinen M.,Wallenius K.,et al.Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field.Applied Soil Ecology,2005,30(2):113-125
    [20] 万忠梅,宋长春.小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系.湿地科学,2008,6(2):249-257 Wan Zhongmei,Song Changchun. Vertical dynamics of soil enzyme activities and its relationship with active organic carbon indicators in Calamagrostis angustifolia wetland.Wetland Science,2008,6(2):249-257(in Chinese)
    [21] Kong Ling,Wang Yubin,Zhao Lina,et al.Enzyme and root activities in surface-flow constructed wetlands.Chemosphere,2009,76(5):601-608
    [22] 聂大刚,王亮,尹澄清,等.白洋淀湿地土壤酶活性空间分布与污染物关系研究.湿地科学,2008,6(2):204-211 Nie Dagang,Wang Liang,Yin Chengqing,et al.Spatial distribution of soil enzyme activities and the relationship with pollutants in wetlands of Baiyangdian.Wetland Science,2008,6(2):204-211(in Chinese)
    [23] 郭继勋,林海俊,姜世成,等.不同草原植被碱化草甸土的酶活性.应用生态学报,1997,8(4):412-416 Guo Jixun,Lin Haijun,Jiang Shicheng,et al.Enzymic activity of alkaline meadow soil with different grassland vegetations.Chinese Journal of Applied Ecology,1997,8(4):412-416(in Chinese)
    [24] 张宝军,白晓龙,何康林,等.生物托盘土壤微生物及酶活性的分布状况.环境科学与技术,2007,30(9):26-28 Zhang Baojun,Bai Xiaolong,He Kanglin,et al.Distribution status of soil microbes and enzyme activity in bio-salver.Environmental Science & Technology,2007,30(9):26-28(in Chinese)
    [25] 黄娟,王世和,鄢璐,等.潜流型人工湿地的脲酶活性分布特性.东南大学学报(自然科学版),2008,38(1):166-169 Huang Juan,Wang Shihe,Yan Lu,et al.Distribution characteristic of urease activity in subsurface constructed wetlands.Journal of Southeast University (Natural Science Edition),2008,38(1):166-169(in Chinese)
    [26] 范立维,张晓华,张水丽,等.不同植物人工湿地处理畜禽废水的效能研究.水土保持学报,2014,28(2):272-275 Fan Liwei,Zhang Xiaohua,Zhang Shuili,et al.Study on the treatment efficiency of livestock wastewater by the constructed wetlands with different plants.J
  • 加载中
计量
  • 文章访问数:  1872
  • HTML全文浏览数:  1579
  • PDF下载数:  911
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-30
  • 刊出日期:  2016-06-03
许巧玲, 王小毛, 黄柱坚, 余光伟, 崔理华. 垂直流人工湿地启动期基质酶的时空变化[J]. 环境工程学报, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117
引用本文: 许巧玲, 王小毛, 黄柱坚, 余光伟, 崔理华. 垂直流人工湿地启动期基质酶的时空变化[J]. 环境工程学报, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117
Xu Qiaoling, Wang Xiaomao, Huang Zhujian, Yu Guangwei, Cui Lihua. Spatial distribution of substrate enzyme in the vertical flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117
Citation: Xu Qiaoling, Wang Xiaomao, Huang Zhujian, Yu Guangwei, Cui Lihua. Spatial distribution of substrate enzyme in the vertical flow constructed wetland[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2239-2244. doi: 10.12030/j.cjee.201411117

垂直流人工湿地启动期基质酶的时空变化

  • 1. 安顺学院资源与环境工程系, 安顺 561000
  • 2. 华南农业大学资源环境学院, 广州 510642
基金项目:

国家自然科学基金资助项目(41271245,41071214)

广东省科技计划项目(2012A020100003)

广东省教育厅广东高校污水生态处理与水体修复工程技术研究中心建设项目(2012gczxA1004)

摘要: 为了解垂直流人工湿地系统中基质酶在去污效果中的作用及其随基质深度和运行时间的变化规律,设置3个垂直流人工湿地系统:种植皇竹草的A系统,种植象草的B系统,以及不种植物的C系统。分别监测3个系统不同基质深度与不同运行时间条件下脲酶、磷酸酶、过氧化氢酶、转化酶和纤维素酶的变化规律,以及这几种酶与TN、TP、COD、NH4+-N 和NO3--N污染物之间的相关性。实验结果表明,上述5种酶都表现出随着基质深度增加而减少的趋势,且上层0~30 cm处的基质酶活性极显著高于中层和底层的酶活性,此外,种植能源植物的A、B系统基质酶活性都高于不种植物C系统,说明湿地中污染物的去除主要集中在上层基质,种植能源植物能够有效促进微生物的活性,增加胞外酶的分泌,提高人工湿地对污染物的去除效果,可为优化人工湿地除污效果以及湿地植物的选择提供理论依据。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回