菌剂强化对水解酸化处理模拟印染废水效果的影响

刘娜, 谢学辉, 杨芳, 沈乐为, 俞承志, 柳建设. 菌剂强化对水解酸化处理模拟印染废水效果的影响[J]. 环境工程学报, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009
引用本文: 刘娜, 谢学辉, 杨芳, 沈乐为, 俞承志, 柳建设. 菌剂强化对水解酸化处理模拟印染废水效果的影响[J]. 环境工程学报, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009
Liu Na, Xie Xuehui, Yang Fang, Shen Lewei, Yu Chengzhi, Liu Jianshe. Bioaugmentation with microorganisms for hydrolysis acidification treatment of dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009
Citation: Liu Na, Xie Xuehui, Yang Fang, Shen Lewei, Yu Chengzhi, Liu Jianshe. Bioaugmentation with microorganisms for hydrolysis acidification treatment of dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009

菌剂强化对水解酸化处理模拟印染废水效果的影响

  • 基金项目:

    国家自然科学基金资助项目(21377023,51508083)

    教育部博士点基金新教师类项目(20120075120014)

    上海市自然科学基金青年项目(12ZR1440400)

    中央高校基本科研业务费专项资金资助(2232015D3-22)

    上海市重点学科建设项目(B604)

    东华大学研究生创新基金项目资助(CUSF-DH-D-2015040)

  • 中图分类号: X522

Bioaugmentation with microorganisms for hydrolysis acidification treatment of dyeing wastewater

  • Fund Project:
  • 摘要: 将具有高效脱色效率的混合菌群FF(优势菌属为Proteobacteria门和Firmicutes门细菌)作为强化菌剂,通过流加菌的方式加入水解酸化反应器,对模拟印染废水进行菌剂强化。通过监测水解酸化反应器进出水的色度、COD、BOD5/COD和VFAs(挥发性脂肪酸)来反应菌剂强化效果。结果表明,经过菌剂强化,模拟印染废水的色度和COD去除率比强化前分别提高了大约15%和20%,同时,印染废水的BOD5/COD值由0.50增加到0.70,表明其可生化性得到显著提高。采用PCR-DGGE技术对菌剂强化前后水解酸化反应器中微生物多样性和群落结构进行探索。结果表明,经过菌剂强化处理,微生物多样性指数从2.17增加到2.56,表明物种丰富度增加,同时微生物群落结构发生显著变化,菌种系统发育树结果表明,菌剂强化后,不仅水解酸化系统中原来存在的优势菌种Bacteroidetes门细菌得以保持优势,同时系统中Proteobacteria门和Firmicutes门细菌得到了显著强化。
  • [1] 谢学辉, 刘娜, 朱文祥, 等. 印染废水脱色生物强化工程菌的构建及应用进展. 化工进展, 2013,32(4):869-873 Xie Xuehui, Liu Na, Zhu Wenxiang, et al. Construction of bioaugmentation engineered bacteria and their application on dyeing wastewater decolorizing: A review. Chemical Industry and Engineering Progress, 2013,32(4):869-873(in Chinese)
    [2] Wang Haitao, Li Qingbiao, He Ning, et al. Removal of anthraquinone reactive dye from wastewater by batch hydrolytic-aerobic recycling process. Separation and Purification Technology, 2009,67(2):180-186
    [3] 张梁. 水解酸化-接触氧化-BAF处理混合印染废水研究. 哈尔滨: 哈尔滨工程大学硕士学位论文, 2012 Zhang Liang. Research on the treatment of mixing dyeing wastewater using hydrolytic acidiifcation-contact oxidation-BAF process. Harbin: Master Dissertation of Harbin Engineering University, 2012(in Chinese)
    [4] Wang Ke, Li Weiguang, Gong Xujin, et al. Biological pretreatment of tannery wastewater using a full-scale hydrolysis acidification system. International Biodeterioration & Biodegradation, 2014, 95(Part A): 41-45
    [5] Al-Amrani W. A., Lim P. E., Seng C. E., et al. Factors affecting bio-decolorization of azo dyes and COD removal in anoxic-aerobic REACT operated sequencing batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 2014,45(2):609-616
    [6] Khouni I., Marrot B., Amar R. B. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Separation and Purification Technology, 2012,87:110-119
    [7] 范凤霞. 混合菌群FF对活性黑5的脱色降解研究. 上海: 东华大学硕士学位论文, 2013 Fan Fengxia. Study on decolorization and degradation of Reactive Black 5 by the flora FF. Shanghai: Master Dissertation of Donghua University, 2013(in Chinese)
    [8] Allen W., Prescott W. B., Derby R. E., et al. Determination of color of water and wastewater by means of ADMI color values//Industrial Waste Conference. Proceedings of the 28th Industrial Waste Conference. Engineering Extension Series. Purdue University Libraries, 1973
    [9] APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington DC: APHA, AWWA, WEF, 1999
    [10] Lane D. J. 16S/23S rDNA sequencing//Stackebrandt E., Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics. Chichester: Wiley, 1991
    [11] Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993,59(3):695-700
    [12] Yang Qingxiang, Wang Jia, Wang Hongtao, et al. Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system. Bioresource Technology, 2012,117:155-163
    [13] 徐灏龙, 白俊跃, 章一丹, 等. 生物强化脱色处理印染废水的中试研究. 中国给水排水, 2010,26(23):91-93 Xu Haolong, Bai Junyue, Zhang Yidan, et al. Pilot study on treatment of printing and dyeing wastewater by bioaugmentation technology. China Water & Wastewater, 2010,26(23):91-93(in Chinese)
    [14] Wang Haitao, Li Qingbiao, Lu Yinghua, et al. Performance of batch-operated combined hydrolytic-aerobic biofilm process in treating anthraquinone reactive dye wastewater. Environmental Engineering Science, 2007,24(4):483-492
    [15] 刘娜, 谢学辉, 柳建设. 印染废水水解酸化作用及其调控研究进展. 化工进展, 2014,33(10):2758-2763 Liu Na, Xie Xuehui, Liu Jianshe. Functions and regulations of hydrolytic acidification in dyeing wastewater treatment: A review. Chemical Industry and Engineering Progress, 2014,33(10):2758-2763(in Chinese)
    [16] Ye Shengquan, Wu Hui, Zhang Chaohua, et al. Study of the hydrolytic acidification-SBR process in aquatic products processing wastewater treatment. Desalination, 2008,222(1-3):318-322
    [17] Chi Xiangqun, Zhang Junjie, Zhao Shuo, et al. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environmental Pollution, 2013,172:33-41
    [18] Forss J., Pinhassi J., Lindh M., et al. Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes Reactive Red 2 and Reactive Black 5. Bioresource Technology, 2013, 130:681-688
    [19] Wang Yuanpeng, Zhu Kang, Zheng Yanmei, et al. The effect of recycling flux on the performance and microbial community composition of a biofilm hydrolytic-aerobic recycling process treating anthraquinone reactive dyes. Molecules, 2011,16(12):9838-9849
  • 加载中
计量
  • 文章访问数:  2479
  • HTML全文浏览数:  1988
  • PDF下载数:  374
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-08
  • 刊出日期:  2016-06-03
刘娜, 谢学辉, 杨芳, 沈乐为, 俞承志, 柳建设. 菌剂强化对水解酸化处理模拟印染废水效果的影响[J]. 环境工程学报, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009
引用本文: 刘娜, 谢学辉, 杨芳, 沈乐为, 俞承志, 柳建设. 菌剂强化对水解酸化处理模拟印染废水效果的影响[J]. 环境工程学报, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009
Liu Na, Xie Xuehui, Yang Fang, Shen Lewei, Yu Chengzhi, Liu Jianshe. Bioaugmentation with microorganisms for hydrolysis acidification treatment of dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009
Citation: Liu Na, Xie Xuehui, Yang Fang, Shen Lewei, Yu Chengzhi, Liu Jianshe. Bioaugmentation with microorganisms for hydrolysis acidification treatment of dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2245-2251. doi: 10.12030/j.cjee.201504009

菌剂强化对水解酸化处理模拟印染废水效果的影响

  • 1.  东华大学环境科学与工程学院, 上海 201620
  • 2.  国家环境保护纺织污染防治工程技术中心, 上海 201620
基金项目:

国家自然科学基金资助项目(21377023,51508083)

教育部博士点基金新教师类项目(20120075120014)

上海市自然科学基金青年项目(12ZR1440400)

中央高校基本科研业务费专项资金资助(2232015D3-22)

上海市重点学科建设项目(B604)

东华大学研究生创新基金项目资助(CUSF-DH-D-2015040)

摘要: 将具有高效脱色效率的混合菌群FF(优势菌属为Proteobacteria门和Firmicutes门细菌)作为强化菌剂,通过流加菌的方式加入水解酸化反应器,对模拟印染废水进行菌剂强化。通过监测水解酸化反应器进出水的色度、COD、BOD5/COD和VFAs(挥发性脂肪酸)来反应菌剂强化效果。结果表明,经过菌剂强化,模拟印染废水的色度和COD去除率比强化前分别提高了大约15%和20%,同时,印染废水的BOD5/COD值由0.50增加到0.70,表明其可生化性得到显著提高。采用PCR-DGGE技术对菌剂强化前后水解酸化反应器中微生物多样性和群落结构进行探索。结果表明,经过菌剂强化处理,微生物多样性指数从2.17增加到2.56,表明物种丰富度增加,同时微生物群落结构发生显著变化,菌种系统发育树结果表明,菌剂强化后,不仅水解酸化系统中原来存在的优势菌种Bacteroidetes门细菌得以保持优势,同时系统中Proteobacteria门和Firmicutes门细菌得到了显著强化。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回