APTES改性污泥基炭的表征及其对水中Pb(II)的吸附特性

邵玲, 陶红, 陈闽南, 王怡心, 李默挺, 毛凌晨. APTES改性污泥基炭的表征及其对水中Pb(II)的吸附特性[J]. 环境工程学报, 2019, 13(3): 633-643. doi: 10.12030/j.cjee.201808132
引用本文: 邵玲, 陶红, 陈闽南, 王怡心, 李默挺, 毛凌晨. APTES改性污泥基炭的表征及其对水中Pb(II)的吸附特性[J]. 环境工程学报, 2019, 13(3): 633-643. doi: 10.12030/j.cjee.201808132
SHAO Ling, TAO Hong, CHEN Minnan, WANG Yixin, LI Moting, MAO Lingchen. Characterization and Pb(II) adsorption properties of APTES-modified sludge-based carbon[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 633-643. doi: 10.12030/j.cjee.201808132
Citation: SHAO Ling, TAO Hong, CHEN Minnan, WANG Yixin, LI Moting, MAO Lingchen. Characterization and Pb(II) adsorption properties of APTES-modified sludge-based carbon[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 633-643. doi: 10.12030/j.cjee.201808132

APTES改性污泥基炭的表征及其对水中Pb(II)的吸附特性

  • 基金项目:

    国家自然科学基金资助项目51679140国家自然科学基金资助项目(51679140)

Characterization and Pb(II) adsorption properties of APTES-modified sludge-based carbon

  • Fund Project:
  • 摘要: 污泥炭(SC)灰分含量高,吸附性能差,因而限制了其应用范围。使用3-氨基丙基三乙氧基硅烷(APTES)对污泥炭进行改性,提高其对重金属的吸附能力。结果表明:APTES成功地负载到污泥炭上;在25 ℃ 时,APTES-SC对Pb(II)的吸附量是SC的8倍;吸附量随溶液pH (1~8)的增大而增强。APTES-SC对Pb(II)的吸附行为符合二级动力学模型,等温吸附曲线符合Langmuir模型,吸附过程是自发、吸热反应(ΔG0)。该方法制备的改性污泥基炭是一种能去除废水中Pb(II)的高效吸附剂。
  • 加载中
  • [1] 刘杨眉, 魏桃员, 王欣,等. 包埋固定化海洋硅藻吸附材料的制备及其对水中铅离子的吸附特性研究[J]. 环境科学学报, 2017, 37(5): 1763-1773.
    [2] MOMCILOVIC M, PURENOVIC M, BOJIC A, et al. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon[J]. Desalination, 2011, 276 (1): 53-59.
    [3] GEORGESCU A M, NARDOU F, ZICHIL V, et al. Adsorption of lead(II) ions from aqueous solutions onto Cr-pillared clays[J]. Applied Clay Science, 2018, 152: 44-50.
    [4] 李坤权, 王艳锦, 杨美蓉, 等. 多胺功能化介孔炭对Pb(Ⅱ)的吸附动力学与机制[J]. 环境科学, 2014, 35(8): 3198-3205.
    [5] 郭学益, 公琪琪, 梁沙, 等. 改性柿子生物吸附剂对铜和铅的吸附性能[J]. 中国有色金属学报, 2012, 22(2): 599-603.
    [6] BOUABIDI Z B, El-NAAS M H, DAN C, et al. Steel-making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution[J]. Chemical Engineering Journal, 2018, 334: 837-844.
    [7] BARAKAT M A. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 2011, 4(4): 361-377.
    [8] 邓林煜, 许国仁, 李圭白. 污水处理厂污泥制作吸附剂的方法及应用[J]. 中国给水排水, 2010, 26(13): 125-128.
    [9] 尹炳奎. 污泥活性炭吸附剂材料的制备及其在废水处理中的应用[D]. 上海: 上海交通大学, 2007.
    [10] 陈坦, 韩融, 王洪涛, 等. 污泥基生物炭对重金属的吸附作用[J]. 清华大学学报(自然科学版), 2014, 54(8): 1062-1067.
    [11] DEVI P, SAROHA A K. Utilization of sludge based adsorbents for the removal of various pollutants: A review[J]. Science of the Total Environment, 2017, 578: 16-33.
    [12] HERNANDEZ-MORALES V, NAVA R, ACOSTA-SILVA Y J, et al. Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with —NH2 groups[J]. Microporous & Mesoporous Materials, 2012, 160(36): 133-142.
    [13] MA Y, LIU W J, ZHANG N, et al. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution[J]. Bioresource Technology, 2014, 169: 403-408.
    [14] VESELA P, SLOVAK V, ZELENKA T, et al. The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu(II) ions and phenol[J]. Journal of Analytical & Applied Pyrolysis, 2016, 121: 29-40.
    [15] ETIENNE M, WALCARIUS A. Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium[J]. Talanta, 2003, 59(6): 1173-1188.
    [16] ZHU J, YANG J, DENG B. Enhanced mercury ion adsorption by amine-modified activated carbon[J]. Journal of Hazardous Materials, 2009, 166(2/3): 866-872.
    [17] FATIMAH I. Preparation, characterization and physicochemical study of 3-amino propyl trimethoxy silane-modified kaolinite for Pb(II) adsorption[J]. Journal of King Saud University: Science, 2018, 30(2): 250-257.
    [18] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
    [19] BALISTRIERI L S, MURRAY J W. The surface chemistry of goethite (alpha FeOOH) in major ion seawater[J]. American Journal of Science, 1981, 281(6): 788-806.
    [20] WAMBA A G N, KOFA G P, KOUNGOU S N, et al. Grafting of amine functional group on silicate based material as adsorbent for water purification: A short review[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3192-3203.
    [21] IFTHIKAR J, WANG J, WANG Q, et al. Highly efficient lead distribution by magnetic sewage sludge biochar: Sorption mechanisms and bench applications[J]. Bioresource Technology, 2017, 238: 399-406.
    [22] LI J, WANG L, QI T, et al. Different N-containing functional groups modified mesoporous adsorbents for Cr(VI) sequestration: Synthesis, characterization and comparison[J]. Microporous & Mesoporous Materials, 2008, 110(2): 442-450.
    [23] YANG G X, JIANG H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48(1): 396-405.
    [24] MURESEANU M, REISS A, STEFANESCU I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation[J]. Chemosphere, 2008, 73(9): 1499-1504.
    [25] CHEN Y D, HO S H, WANG D, et al. Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis[J]. Bioresource Technology, 2017, 247: 463-470.
    [26] ZHANG W H, LO I M. EDTA-enhanced washing for remediation of Pb-and/or Zn- contaminated soils[J]. Journal of Environmental Engineering, 2006, 132(10): 1282-1288.
    [27] JUANG R S, WU F C, TSENG R L. Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels[J]. Journal of Colloid and Interface Science, 2000, 227(2): 437-444.
    [28] HO Y S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials, 2006, 37(48): 681-689.
    [29] ROBERTS, D R, SCHEIDEGGER, et al. Kinetics of mixed Ni-Al precipitate formation on a soil clay fraction[J]. FEBS Letters, 1999, 425(3): 517-522.
    [30] BADRUDDOZA A Z M, SHAWON Z B Z, DANIEL T W J, et al. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater[J]. Carbohydrate Polymers, 2013, 91(1/2): 322-332.
    [31] CHEN T, ZHOU Z, HAN R, et al. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism[J]. Chemosphere, 2015, 134: 286-293.
    [32] ELAIGWU S E, ROCHER V, KYRIAKOU G, et al. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of prosopis africana shell[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3467-3473.
    [33] RAHIMI M, BABU D J, SINGH J K, et al. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of Chemical Physics, 2015, 40(12): 1361-1403.
    [34] FREUNDLICH H. über die adsorption in l?sungen (adsorption in solution) [J].Journal of Chemical Physics, 1906, 57: 384-470.
    [35] WANG P, CAO M, WANG C, et al. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite[J]. Applied Surface Science, 2014, 290: 116-124.
    [36] 李刚. 污泥基活性炭制备条件的优化及其对Pb2+的吸附效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [37] 包汉峰, 杨维薇, 张立秋, 等. 污泥基活性炭去除水中重金属离子效能与动力学研究[J]. 中国环境科学, 2013, 33(1): 69-74.
    [38] 肖乐勤, 陈春, 周伟良, 等. 活性炭纤维的氧化改性及其对铅离子吸附研究[J]. 水处理技术, 2011, 37(3): 37-40.
    [39] MOHAN D, SINGH P, SARSWAT A, et al. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars[J]. Journal of Colloid & Interface Science, 2015, 448: 238-250.
    [40] ZHOU Y, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152: 538-542.
    [41] PHUEMGPRASOP T, SITTIWONG J, UNOB F. Removal of heavy metal ions by iron oxide coated sewage sludge[J]. Journal of Hazardous Materials, 2011, 186(1): 502-507.
    [42] YANG X, XU G, YU H. Removal of lead from aqueous solutions by ferric activated sludge-based adsorbent derived from biological sludge[J/OL]. [2018-08-01]. Arabian Journal of Chemistry, 2016. https: //doi.org/10.1016/j.arabjc.2016.04.017.
    [43] 王文东, 刘荟, 张银婷, 等. 新型污泥基吸附材料制备及其氨氮去除性能评价[J]. 环境科学, 2016, 37(8): 3186-3191.
  • 加载中
计量
  • 文章访问数:  4153
  • HTML全文浏览数:  4095
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-03-14

APTES改性污泥基炭的表征及其对水中Pb(II)的吸附特性

  • 1. 上海理工大学环境与建筑学院,上海 200093
基金项目:

国家自然科学基金资助项目51679140国家自然科学基金资助项目(51679140)

摘要: 污泥炭(SC)灰分含量高,吸附性能差,因而限制了其应用范围。使用3-氨基丙基三乙氧基硅烷(APTES)对污泥炭进行改性,提高其对重金属的吸附能力。结果表明:APTES成功地负载到污泥炭上;在25 ℃ 时,APTES-SC对Pb(II)的吸附量是SC的8倍;吸附量随溶液pH (1~8)的增大而增强。APTES-SC对Pb(II)的吸附行为符合二级动力学模型,等温吸附曲线符合Langmuir模型,吸附过程是自发、吸热反应(ΔG0)。该方法制备的改性污泥基炭是一种能去除废水中Pb(II)的高效吸附剂。

English Abstract

参考文献 (43)

目录

/

返回文章
返回