[1]
|
Reid B. J., Jones H. C. Bioavailability of persistent organic pollutants in soils and sediments a perspective on mechanisms, consequences and assessment. Environmental Pollution, 2000,108(1):103-112
Google Scholar
Pub Med
|
[2]
|
马建伟, 王慧, 罗启仕,等. 利用电动技术强化有机污染土壤原位修复研究. 环境工程学报,2007,1(7):119-124 Ma J. W., Wang H., Luo Q. S., et al. Enhancement of in-situ remediation of organics by electrokinitics. Chinese Journal of Environmental Engineering, 2007,1(7):119-124(in Chinese)
Google Scholar
Pub Med
|
[3]
|
Röhrs J., Ludwig G., Rahner D. Electrochemically induced reactions in soils—a new app roach to the in situ remediation of contaminated soils? Part 2: Remediation experiments with a natural soil containing highly chlorinated hydrocarbons. Electrochimica Acta, 2002,47(9):1405-1414
Google Scholar
Pub Med
|
[4]
|
Saichek R. E., Reddy K. R. Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. Journal of Environmental Engineering and Science, 2005,4(5):327-339
Google Scholar
Pub Med
|
[5]
|
Ko S. O., Schlautman M. A., Carraway E. R. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environmental Science & Technology, 2000,34(8):1535-1541
Google Scholar
Pub Med
|
[6]
|
Saichek R. E., Reddy K. R. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, 2003,51(4):273-287
Google Scholar
Pub Med
|
[7]
|
Li A., Cheung K. A., Reddy K. R. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene. Journal of Environmental Engeering, 2000,126(6):527-533
Google Scholar
Pub Med
|
[8]
|
Reddy K. R., Saichek R. E. Effect of soil type on eletrokinetic removal of phenanthrene using surfactants and cosolvents. Journal of Environmental Engeering, 2003,129(4):336-346
Google Scholar
Pub Med
|
[9]
|
Kim S. S., Han S. J. Application of an enhanced electrokinetic ion injection system to bioremediation. Water Air and Soil Pollution, 2003,146(1-4):365-377
Google Scholar
Pub Med
|
[10]
|
刘光崧. 土壤理化分析与剖面描述. 北京:中国标准出版社, 1996.24
Google Scholar
Pub Med
|
[11]
|
Yalkowsky S. H., Pinal R. Estimation of the aqueous solubility of complex organic compounds. Chemosphere, 1993,26(7):1-39
Google Scholar
Pub Med
|
[12]
|
Shapiro A. P., Probstein R. F. Removal of contaminants form saturated clay by electroosmosis. Environmental Science & Technology, 1993,27(2):282-290
Google Scholar
Pub Med
|
[13]
|
Park J. Y., Lee H. H., Kim S. J., et al. Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Journal of Hazardous Materials, 2007,140(1-2):230-236
Google Scholar
Pub Med
|
[14]
|
Niqui-Arroyo J., Bueno-Montes M., Posada-Baquero R.,et al. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Environmental Pollution, 2006,142(2):326-332
Google Scholar
Pub Med
|
[15]
|
Zhu L., Chen B., Shen X. Sorption of phenol, p-nitrophenol, and aniline to dualcation organobentonites from water. Environmental Science & Technology, 2000,34(3):468-475
Google Scholar
Pub Med
|
[16]
|
Edwards D.A., Adeel Z., Luthy R.G. Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environmental Science & Technology, 1994,28(8):1550-1560
Google Scholar
Pub Med
|
[17]
|
Smith J. A., Sahoo D., Mclellan H. M., et al. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100. Environmental Science & Technology, 1997,31(12):3565-3572
Google Scholar
Pub Med
|