[1]
|
Smedley P. L., Kinniburgh D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002,17(5):517-568
Google Scholar
Pub Med
|
[2]
|
Kirk Nordstrom D. Worldwide occurrences of arsenic in ground water. Science, 2002,296(5576):2143-2145
Google Scholar
Pub Med
|
[3]
|
王焰新,苏春利,谢先军,等. 大同盆地地下水砷异常及其成因研究. 中国地质, 2010,37(3):771-780 Wang Yanxin,Su Chunli, Xie Xianjun, et al. The genesis of high arsenic groundwater: A case study in Datong basin. Geology of China, 2010,37(3):771-780(in Chinese)
Google Scholar
Pub Med
|
[4]
|
Zhang Hui, Ma Dongsheng, Hu Xiongxi. Arsenic pollution in groundwater from Hetao Area, China. Environmental Geology, 2002,41(6):638-643
Google Scholar
Pub Med
|
[5]
|
朱玉龙,郑玉建,陈晓霞,等. 新疆奎屯地砷病区与非病区水中砷及金属元素含量的分布. 新疆医科大学学报, 2009,32(3):247-248 Zhu Yulong, Zheng Yujian, Chen Xiaoxia, et al. Characteristics of mineral element concentrations in the drinking waters of regions with and without endemic arsenism disease in Quitun, Xinjiang. Journal of Xinjiang Medical University, 2009,32(3):247-248(in Chinese)
Google Scholar
Pub Med
|
[6]
|
Smedley P. L., Zhang M., Zhang G., et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 2003,18(9):1453-1477
Google Scholar
Pub Med
|
[7]
|
金银龙, 梁超轲, 何公理, 等. 中国地方性 砷中毒分布调查(总报告). 卫生研究, 2003,32(6):519-540 Jin Yinlong, Liang Chaoke, He Gongli, et al. Study on distribution of endemic arsenism in China. Journal of Hygiene Research, 2003,32(6):519-540(in Chinese)
Google Scholar
Pub Med
|
[8]
|
Michael F. Hughes. Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 2002,133(1):1-16
Google Scholar
Pub Med
|
[9]
|
Dinesh Mohan, Charles U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 2007,142(1-2):1-53
Google Scholar
Pub Med
|
[10]
|
Yuan Tao, Hu Jiangyong, Ong Say Leong, et al. Arsenic removal from household drinking water by adsorption. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substance & Environmental Engineering, 2002,37(9):1721-1736
Google Scholar
Pub Med
|
[11]
|
Streat M., Hellgardt K., Newton N. L. R. Hydrous ferric oxide as an adsorbent in water treatment-Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Safety and Environmental Protection, 2008,86(B1):21-30
Google Scholar
Pub Med
|
[12]
|
Gu Zhimang, Fang Jun, Deng Baolin. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environmental Science & Technology, 2005,39(10):3833-3843
Google Scholar
Pub Med
|
[13]
|
Jing Chuanyong, Liu Suqin, Patel Manish, et al. Arsenic leachability in water treatment adsorbents. Environmental Science & Technology, 2005,39(14):5481-5487
Google Scholar
Pub Med
|
[14]
|
Paul K. Westerhoff, Troy M. Benn, Abraham S.C. Chen, et al. Assessing arsenic removal by metal (Hydr)oxide adsorptive media using rapid small scale column tests. EPA Report 600/R-08/051, US EPA, 2008
Google Scholar
Pub Med
|
[15]
|
Kiril Hristovski, Andyew Baumgardner, Paul Westerhoff. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. Journal of Hazardous Materials, 2007,147(1-2):265-274
Google Scholar
Pub Med
|
[16]
|
Maria E. Pena, George P. Korfiatis, Manish Patel, et al. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Research, 2005,39(11):2327-2337
Google Scholar
Pub Med
|
[17]
|
Luo Ting, Cui Jinli, Hu Shan, et al. Arsenic removal and recovery from copper smelting wastewater using TiO2. Environmental Science & Technology, 2010,44(23):9094-9098
Google Scholar
Pub Med
|
[18]
|
Andre Nel, Tian Xia, Lutz Mädler, et al. Toxic potential of materials at the nanolevel. Science, 2006,311(5761):622-627
Google Scholar
Pub Med
|
[19]
|
景传勇, 崔金立. 一种用于饮用水净化的二氧化钛颗粒吸附剂的制备方法:中国,201110022984.X.2011
Google Scholar
Pub Med
|
[20]
|
王志远, 张凯. 活性炭负载TiO2的制备与表征.山东化工, 2009,38(2):8-11 Wang Zhiyuan, Zhang Kai. Preparation and performance of activated carbon and TiO2/AC. Shandong Chemical Industry, 2009,38(2):8-11(in Chinese)
Google Scholar
Pub Med
|
[21]
|
Gregory J. Wilson, Aaron S. Matijasevich, David R. G. Mitchell, et al. Modification of TiO2 for enhanced surface properties: Finite Ostwald ripening by a microwave hydrothermal process. Langmuir,2006,22(5):2016-2027
Google Scholar
Pub Med
|
[22]
|
Snejana Bakardjieva, Jan Subrt, Vaclav Stengl, et al. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Applied Catalysis B: Environmental, 2005,58(3-4):193-202
Google Scholar
Pub Med
|
[23]
|
Zhang Xin, Li Xiaogang, Wu Junsheng. Simple sol-gel route to synthesis of mesoporous TiO2. Sol-Gel Sci. Technol., 2009,51(1):1-3
Google Scholar
Pub Med
|
[24]
|
豆小敏, 于新, 赵蓓, 等. 5种铁氧化物去除As(V)性能的比较研究.环境工程学报, 2010,4(9):1989-1994 Dou Xiaomin, Yu Xin, Zhao Bei, et al. A performance comparison of arsenate removal from water by five iron oxides. Chinese Journal of Environmental Engineering, 2010,4(9):1989-1994(in Chinese)
Google Scholar
Pub Med
|
[25]
|
Pena Maria, Meng Xiaoguang, Jing Chuanyong, et al. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environmental Science & Technology, 2006,40(4):1257-1262
Google Scholar
Pub Med
|
[26]
|
郭华明,王焰新,李永敏. 山阴水砷中毒区地下水砷的富集因素分析. 环境科学,2003,24(4):60-67 Guo Huaming, Wang Yanxin, Li Yongmin. Analysis of factors resulting in anomalous arsenic concentration in groundwaters of shanyin, Shanxi Province. Environmental Science, 2003,24(4):60-67
Google Scholar
Pub Med
|
[27]
|
Rengaraj S., Kyeong-Ho Yeon, Seung-Hyeon Moon. Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 2001,87(1-3):273-287
Google Scholar
Pub Med
|
[28]
|
Paritam K. Dutta, Ajay K. Ray, Virender K. Sharma, et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 2004,278(2):270-275
Google Scholar
Pub Med
|
[29]
|
Stachowicz M., Hiemstra T., Van Riemsdijk W. H., Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO43-, and CO32- ions on goethite. Journal of Colloid and Interface Science, 2008,320(2):400-414
Google Scholar
Pub Med
|