Processing math: 100%

JIN Yue, YU Dayan, LI Haixiang, ZHANG Wenjie. Nitrogen removal performance and mechanism of anammox-MBR coupling process in sewage treatment[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1102-1110. doi: 10.12030/j.cjee.202301035
Citation: JIN Yue, YU Dayan, LI Haixiang, ZHANG Wenjie. Nitrogen removal performance and mechanism of anammox-MBR coupling process in sewage treatment[J]. Chinese Journal of Environmental Engineering, 2023, 17(4): 1102-1110. doi: 10.12030/j.cjee.202301035

Nitrogen removal performance and mechanism of anammox-MBR coupling process in sewage treatment

  • Corresponding author: ZHANG Wenjie, 2010053@glut.edu.cn
  • Received Date: 10/01/2023
    Available Online: 10/04/2023
  • Anaerobic ammonia oxidation (anammox) process has the problem of unstable treatment efficiency in treating domestic sewage, which seriously hinders its engineering application of sewage treatment. In view of the above problems, this paper proposed to use anammox-MBR (AX-MBR) coupling process to treat sewage, which included anoxic reactor, aerobic reactor and membrane module. During the startup of the experiment, the activated sludge of the sewage treatment plant was added, then the dissolved oxygen of the system was reduced, and the anaerobic ammonia oxidizing bacteria (AnAOB) was added. The results showed that the addition of AnAOB could effectively improve the NH4+-N removal rate of AX-MBR, and the average NH4+-N removal rate increased significantly from 68% to 87%. During the experiment, the temperature of the reactor was not controlled. The results indicated that the activity of AnAOB decreased sharply with decreasing temperature when the temperature was lower than 20 ℃. During the operation in low temperature environment, the way of reducing the influent load could be adopted to ensure the treatment rate. The research data of 15N stable isotope tracer method on the nitrogen removal contribution rate of anammox showed that the nitrogen removal of AX-MBR was mainly completed by the way dominated by anammox, and its nitrogen removal contribution rate could reach 65%. The 16S high throughput sequencing results showed that the AnAOB in the anoxic reactor was mainly Candidatus Kuenenia, and the abundance of denitrifying bacteria in the anoxic reactor and aerobic reactor was greater than that of ammonia-oxidizing bacteria, which indicated that the NO2--N in AX-MBR mainly formed from partial denitrification, which proved the existence of partial denitrification/anammox process.The results of this study can provide reference for the development of anammox process.
  • 电容去离子(capacitive deionization,CDI)因其具有低能耗和对环境影响小的优点而备受关注[1-3]。然而,传统的CDI存在吸附容量低和间歇运行的缺点。为克服这些缺陷,2013年由JEON等[4]首次提出了流动电极电容去离子(flow electrode capacitive deionization,FCDI)的技术。活性炭[5-6]、炭黑(carbon black,CB)[7]以及碳纳米管[8-10]等多孔碳材料被用作FCDI中的流动电极,而不是传统CDI中的固定电极。带电离子在电场下迁移,然后储存在表面带有相反电荷的流动电极中。由于不断有再生的流动电极补充到电极室,因此,FCDI能够进行连续脱盐[11-12]。然而,关于流动电极孔径分布对FCDI脱盐性能的影响的研究较少。在先前的研究中提到,增加流动电极的微孔面积可以有效地改善CDI电极的脱盐性能[13]。此外,也有研究[14]表明,较高的介孔率使离子更容易的进入电极/电解质界面。因此,流动电极的孔径分布对FCDI的脱盐性能的影响机制仍存在争议。

    在本研究中,使用具有不同孔径和相同导电性的4种炭黑作为流动电极,比较了孔径分布对FCDI脱盐性能的影响,使用X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、拉曼光谱(Raman)和电化学阻抗谱(EIS)对流动电极的电子传递能力进行了表征,在2种操作模式下对FCDI脱盐效果进行了评估,并且使用吸附-解吸实验探究了微孔和介孔对离子的吸附和解吸速率的影响,以期为设计和选择具有最佳脱盐效果的流动电极提供参考。

    使用18.2 MΩ·cm的超纯水(Millipore)和Na2SO4(国药集团化学试剂有限公司)制备,2 g·L−1的Na2SO4作为流动电极的电解液和FCDI的进水。具有不同比表面积和孔径分布的4种炭黑(VXC、ECP、ECP600和BP2000)被用作流动电极材料(VXC和BP2000购自美国Cabot,ECP和ECP600购自日本Lion)。流动电极是通过在电解液中加入1%(质量分数)的炭黑来制备的。流动电极和进水的体积分别为50 mL和60 mL。流动电极的分散液被连续搅拌12 h以确保均匀混合。

    实验中所有的FCDI装置均相同,包括2个15 cm×15 cm的PVC塑料板作为装置的底板。使用2个石墨板作为集流体,集流体上刻有21个深度和宽度均为2 mm的S形流道。使用1对阴/阳离子交换膜(CEM-CSE-2,AEM-AGU)使离子可以选择性的通过。为了防止水的泄漏以及电极之间的直接接触,使用空心硅胶垫插入离子交换膜之间作为密封层,离子交换膜的有效面积为36 cm2。电极室分别位于离子交换膜的两侧(图2(a))。

    图 2  FCDI及三电极体系电解池实物图
    Figure 2.  Physical diagram of FCDI and electrolytic cell with three-electrode system

    FCDI脱盐系统包括脱盐装置、蠕动泵、电导率仪和直流电源。使用蠕动泵(BT100-2J)将溶液连续泵入FCDI装置。在脱盐过程中,使用三通道直流电源(IT6322A),以1 V的恒定电压为设备连续供电,并实时监测外部电路的电流。使用电导率仪(DDSJ-308F)连续监测进水溶液的电导率。为了保证准确性,所有的脱盐实验均重复3次。

    常见的FCDI操作模式包括单循环(single cycle,SC)和隔离封闭循环(isolated closed-cycle,ICC),它们适用于不同的盐分离情况。在ICC模式下,如图1(a)所示,流动电极在阴极和阳极分别循环,脱盐过程中离子吸附占主导地位,以实现溶液中的阴离子和阳离子的分离。在流动电极吸附容量达到饱和后,电压被逆转以实现流动电极的再生。在SC模式下,如图1(b)所示,流动电极在阴极和阳极循环,同时进行离子吸附和解吸的过程,因此,流动电极实现连续再生与更新。

    图 1  2种FCDI运行模式结构示意图
    Figure 1.  Schematic of the FCDI operating modes

    4种炭黑的比表面积及孔径分布使用氮气吸附-解吸仪(ASAP 2460)测定,其中比表面积使用Brunauer-Emmett-Teller法计算,孔径分布参数使用Barrett-Joyner-Halenda法计算,外表面积使用t-plot法计算。

    炭黑样品的表面元素组成使用能量色散X射线光谱仪(Escalab250Xi)在2×10−6 Pa真空度下进行测定,结合能以C1s峰(284.8 eV)为标准进行了标定。晶体结构使用X射线衍射仪(D8 Advance)进行表征。炭黑样品的石墨化程度是通过共聚焦拉曼显微镜(inVia Qontor)获得,拉曼光谱是使用532 nm激光的拉曼光谱仪采集的,中心光谱范围为1 500 cm−1,激光功率为1%,累计5次。官能团组成使用傅里叶变换显微红外光谱仪(Nicolet iN10MX)进行分析,光谱扫描范围为4 000~500 cm−1,分辨率为4 cm−1,扫描64次。炭黑的粒度由激光粒度分析仪测试得到(Mastersizer 3000),将4种炭黑分散在超纯水中,保持搅拌将高速转动使浆液混匀,使用自动进样器将浆液送入装置,从而得到炭黑的粒度分布曲线。在液氮温度(77 K)下,用氮气吸附脱附仪测定了样品的比表面积。为保证测试结果准确,在测试之前,样品在真空(10−4 MPa)下于300 ℃下脱气24 h。

    炭黑的电化学阻抗谱使用电化学工作站(Interface1000)进行测定,使用三电极体系实物装置如图2(b)。在超声条件下,将聚偏氟乙烯(PVDF)溶解在N, N-二甲基乙酰胺中,按照PVDF:CB=1:9的比例分别加入4种炭黑,制成炭黑浆液。浆液加热搅拌至粘稠,并滴涂在导电玻璃上以制备成固定电极用于电化学阻抗谱的测试。扫描频率范围为1 000 kHz至0.1 Hz。在开路电压条件下,在5 mV的低振幅电压下记录流动电极的阻抗谱,并得到它们的接触电阻和电子转移电阻。

    在所有的脱盐实验中,对电压、装置内电流和进水的电导率进行实时监测和记录,根据单位时间脱盐量,计算出脱盐性能。脱盐量根据式(1)进行计算。

    R=C0ηV×106tAeffM (1)

    式中:R为脱盐量,μmol·(cm2·min)−1C0为进水质量浓度,g·L-1ɳ为去除率,%;V为进水体积,L;t为运行时间,min;Aeff为离子交换膜的有效面积,cm2M为Na2SO4的摩尔质量,g·mol−1

    炭黑样品的N2吸附-脱附曲线见图3(a),ECP和ECP600的吸附脱附曲线是典型的介孔等温线。孔径分布曲线如图3(b)所示。可见,4个炭黑样品均有丰富的介孔和微孔结构,BP2000主要以0.2 nm和1.2 nm的微孔形式存在,ECP600则以3 nm的介孔形式存在。此外,由激光粒度仪测定VXC、ECP、ECP600和BP2000的粒径均在47~100 μm,4种炭黑流动电极的主要得分布形式分别为59、64、61和69 μm的团聚体。同时,使用SEM表征了4种炭黑流动电极的表面形貌(图4)。可见,炭黑粉末表面呈均匀分布,且通过计算得到4种炭黑粉末的粒径基本在0.1 μm左右,4种炭黑粉末表面形貌没有明显区别。由于粒径极小,发生了明显的团聚现象,这与激光粒度仪的测试结果一致。

    图 3  炭黑的孔径分布
    Figure 3.  Pore distribution of carbon black
    图 4  炭黑的表面形貌
    Figure 4.  Surface morphology of carbon black

    炭黑的比表面积由介孔面积、微孔面积与外表面积3部分组成。由图5可见,4种炭黑的比表面积由大到小为:BP2000(1 552.96 m2·g−1)、ECP600(1 343.84 m2·g−1)、ECP(858.84 m2·g−1)和VXC(249.07 m2·g−1)。ECP600和BP2000分别具有最大的介孔和微孔面积。VXC、ECP和ECP600的微孔面积相对接近(分别为83.77、161.94和143.80 m2·g−1)。ECP的介孔面积是VXC的4倍,ECP600的介孔面积是ECP的2倍。值得一提的是,BP2000和ECP的介孔面积比较接近(分别为459.36 m2·g−1和468.41 m2·g−1),而BP2000的微孔面积是ECP的4倍。4种类型炭黑的孔径分布和比表面积有所不同。后续进一步比较在2种操作模式下使用4种炭黑流动电极时FCDI的脱盐性能。

    图 5  4种炭黑的比表面积分布
    Figure 5.  Surface area distribution of four types of carbon black

    在ICC模式下,比较了4种炭黑作为流动电极时FCDI的脱盐性能。如图6(a)所示,在1 V电压条件下,当使用ECP600作为流动电极时,FCDI的脱盐率可以达到18.5%,高于其他3种炭黑流动电极。同时,与脱盐性能最差的VXC相比,使用ECP600作为流动电极时,FCDI的单位时间脱盐量提高了300%,达到0.07 μmol·(cm2·min)−1(图6(b))。结果表明,在ICC模式下,ECP600作为流动电极可使FCDI获得最佳脱盐效果。

    图 6  炭黑流动电极在ICC模式下FCDI的脱盐性能
    Figure 6.  Desalination performance of FCDI with the CB flow electrodes under ICC operation mode

    在SC模式下进行了3 h的脱盐实验,SC模式与ICC模式下的脱盐效果明显不同。如图7(a)所示,在SC模式下,使用具有最大的比表面积和微孔面积的BP2000作为流动电极时,FCDI的脱盐率仅为7.9%,在4种炭黑流动电极中最低。当ECP600被用作流动电极时,FCDI的脱盐率能够达到63.3%,高于其他3种炭黑流动电极。并且相对于脱盐性能最差的BP2000而言,脱盐量可以达到0.08 μmol·(cm2·min)−1,提高了700%,(图7(b))。结果表明,在SC模式下,当具有大量介孔的炭黑流动电极时,FCDI的脱盐性能最好;当使用具有大量微孔的流动电极时,FCDI的脱盐性能最差。此外,在SC模式下,BP2000作为流动电极时,FCDI的脱盐效果远远低于ICC模式。这可能是因为在SC模式下流动电极不断地再生,而BP2000存在大量微孔使流动电极不能及时再生,导致流动电极的吸附容量下降。

    图 7  炭黑流动电极在SC模式下FCDI的脱盐性能
    Figure 7.  Desalination performance of FCDI with the CB flow electrodes under SC mode

    为了阐明流动电极的孔径分布对脱盐性能的影响,利用IBM SPSS统计软件分析了流动电极的孔径分布与FCDI在ICC和SC模式下的脱盐性能之间的相关性。选择皮尔逊系数作为多个相关因素的双变量相关分析的相关系数,用来衡量多个因素之间的相关程度(表1)。

    表 1  流动电极的比表面积和孔径分布与FCDI脱盐性能的相关性
    Table 1.  Correlation between specific surface area and pore distribution on FCDI desalination performance
    运行模式微孔/(m2·g−1)介孔/(m2·g−1)比表面积/(m2·g−1)外表面积/(m2·g−1)
    rPrPrPrP
    ICC0.3910.2090.842**0.0010.918**00.650*0.022
    SC−0.725**0.0080.583*0.047−0.0730.822−0.2790.379
      注: r是皮尔逊相关系数,P是显著性指数,*表示P<0.05水平上显著;**表示P<0.01水平上显著。
     | Show Table
    DownLoad: CSV

    在ICC模式下,炭黑流动电极的介孔面积(P<0.01)[15],比表面积(P<0.01)和外表面积(P<0.05)与脱盐效果表现出高度的相关性,其对应的皮尔逊相关系数r分别为0.842、0.918和0.650(表1)。在ICC模式下,微孔面积和FCDI的脱盐效果之间没有明显的相关性(P>0.05)。结果表明,在ICC模式下,FCDI的去除效率与流动电极的比表面积呈正相关,且介孔面积是决定FCDI脱盐性能的主导因素[16]

    在SC模式下,炭黑流动电极的比表面积(P>0.05)和外表面积(P>0.05)与FCDI的脱盐性能之间的相关性不显著。介孔面积与FCDI的脱盐性能表现出显著正相关(P<0.05),r=0.583。而微孔面积显示出显著负相关(P<0.01),r=−0.725。因此,在SC模式下,FCDI的脱盐性能随着流动电极介孔面积的增加而提高,随着微孔面积的增加而降低。

    在FCDI的脱盐过程中主要存在电子传递和离子迁移2个过程。因此,为了探索离子迁移对脱盐性能的影响,需要在电子传递能力一致的条件下进行分析。一般认为,多孔碳材料的电子传递能力主要来自2个方面:由表面具有氧化还原能力的官能团产生的间接电子传递和由碳基体产生的直接电子传递。为了测试炭黑流动电极的电子传递能力,使用XPS和FT-IR对间接电子传递能力进行表征;使用XRD和拉曼光谱对直接电子传递能力进行表征。

    1)碳基质的直接电子转移。炭黑可以通过碳基质直接实现电子传递,这可以用其石墨化程度来表示[17-18]。炭黑的晶体结构如图8(a)所示。4个炭黑样品在2θ=26.2°处表现出相对清晰的峰,这是由于石墨的(002)面的衍射[19-20]。这一结果与拉曼光谱结果一致(图8(b))。在1 300 cm−1和1 580 cm−1处分别观察到明显的D和G峰[21]。D峰代表C原子晶体的缺陷,G峰代表C原子sp2杂化的面内拉伸振动。D波段和G波段综合强度的比例值(ID/IG)越大[22-23],C原子晶体的缺陷越多,炭黑的石墨化程度越高[24-25]。4个炭黑样品的ID/IG值分别为1.03、1.14、1.17和1.13,表明其通过碳基体进行直接电子传递的能力比较接近。

    图 8  炭黑的石墨化程度
    Figure 8.  Graphitization degree of carbon black

    2)间接电子传递。具有氧化还原活性的表面官能团是炭黑主要的电活性成分[26]图9(a)为炭黑的典型XPS元素图谱。C1s光电子峰占主导地位,次要的信号峰表明在样品表面区域还存在氧元素(O1s)[27-28]。4个炭黑中的碳元素和氧元素都很丰富,且比例接近[29]。此外,炭黑样品的表面官能团使用FT-IR进行表征。如图9(b)所示,在2 200 cm−1和1 980 cm−1的C≡C和C=O伸缩振动表明芳香碳和羧基的存在[30]。分别在1 600 cm−1和1 250 cm−1出现C—C和C—O—C的骨架振动吸收峰,表明醚的存在。图谱中未检测到醌和苯醌等电活性基团[31-32]。因此,4种炭黑流动电极主要以直接电子传递为主且传递能力接近。

    图 9  炭黑的表面元素组成与官能团组成
    Figure 9.  Surface elements and functional groups of carbon black

    通过分别表征表面官能团间接电子传递和碳基体的直接电子传递能力,观察到4个炭黑流动电极的电子传递能力基本相同,电子传递能力的差异并不是4种炭黑流动电极脱盐性能不同的主要原因。因此,使用炭黑作为流动电极时,FCDI的脱盐效果主要受离子迁移(受流动电极的孔径分布控制)的影响。

    3)炭黑的导电性。由炭黑的奈奎斯特图(图10)可见,曲线与X轴的交点是炭黑样品的欧姆电阻(Rs)[33-35],高频区域的半圆直径代表炭黑和集流体之间的电荷转移电阻,也被称为接触电阻(Rct)[36-37]。欧姆电阻和接触电阻值由等效电路计算得到。VXC、ECP、ECP600和BP2000作为流动电极的Rs非常接近,分别为2.07、2.28、2.07和1.89 Ω。这说明炭黑样品具有相似的电阻。

    图 10  炭黑流动电极的奈奎斯特图
    Figure 10.  Nyquist plots for CB flow electrodes

    为了阐述流动电极的孔径分布对FCDI中离子吸附和解吸的影响,进行了充电-放电循环实验。电压在充电30 min后迅速反转,此时被吸附的离子从流动电极表面解吸,解吸时间为5 min。1次充电和放电为1个周期,每个样品进行4个周期的实验。

    当VXC、ECP和ECP600作为流动电极时,每个循环中盐溶液的吸附和解吸量均非常接近。如图11所示,在每个充电-放电循环后,电导率的变化是完全可重复的,表明介孔型流动电极的再生与更新具有显著的稳定性,而BP2000作为流动电极时,电导率变化曲线呈明显的下降趋势。

    图 11  吸附-脱附电导率变化曲线
    Figure 11.  Adsorption-desorption conductivity curve

    吸附速率如图12(a)所示。当以微孔为主的BP2000作为流动电极时,第1个循环的充电效率是4种流动电极中最高的,达到0.23 μS·(cm·s)−1。但如图12(b)所示,BP2000作为流动电极时,放电效率低于ECP和ECP600,仅为0.95 μS·(cm·s)−1,并且在所有4个循环中,解吸量均低于吸附量,导致充电效率在4个循环过程中逐渐下降。以上结果证明,由于较小的微孔尺寸和较长的吸附-解吸路径,很难实现快速解吸。流动电极的再生因微孔数量过多而受到限制,导致脱盐效果下降。

    图 12  离子在流动电极表面的吸附-脱附速率变化
    Figure 12.  Variation of adsorption-desorption rate of ions on the surface of flow electrodes

    结合上述结果可以得出以下结论:在ICC模式下,ECP600被用作流动电极时,FCDI呈现出最佳的脱盐性能。高比表面积使ECP600作为流动电极具有很高的吸附容量。由于通过介孔的离子吸附路径比微孔的短,ECP600在1 h内可吸附更多的离子。

    在SC模式下,流动电极同时进行离子的吸附和解吸,可确保流动电极一直拥有良好的脱盐性能。然而,离子的脱附过程明显受到微孔的孔径较小和迁移路径较长的限制。在长期运行过程中,流动电极不能快速再生,限制了FCDI的脱盐性能。因此,在SC模式下,BP2000作为流动电极时,FCDI的脱盐性能很差。相反的是,ECP600和ECP均是以介孔为主,孔径较大,吸附-解吸路径较短。离子在流动电极表面迅速地进行吸附和解吸过程。经过长期的脱盐过程,流动电极的更新率仍然得到保证,吸附容量依然保持在较高水平。

    1)不同孔径分布的流动电极在不同运行模式下的脱盐效果差异明显。在ICC运行模式下,使用介孔面积最大的炭黑作为流动电极时,FCDI的脱盐率最高,微孔面积最大的炭黑流动电极次之。而在SC运行模式下,微孔面积最大的炭黑作为流动电极时,FCDI的脱盐效果骤降,去除率仅为7.9%。

    2) 4种炭黑流动电极基本不存在间接电子传递,均以直接电子传递为主。同时,孔径分布存在非常明显的差异,ECP600和ECP是以介孔结构为主导,而BP2000则是微孔结构为主导。

    3)在ICC模式下,FCDI的脱盐性能与流动电极的比表面积呈正相关,并以介孔面积为主导因素。

    4)在SC模式下,FCDI的脱盐性能与介孔面积呈正相关,与微孔面积呈明显的负相关,即脱盐性能随着流动电极介孔面积的增加而提高,随着微孔面积的增加而降低。

    5)在脱盐过程中微孔结构会抑制了离子的解吸,流动电极不能快速再生,从而降低了吸附容量。因此,具有大量微孔的BP2000在SC模式下的脱盐效果远低于其他3种流动电极,具有介孔结构的流动电极能够避免这个缺点。

  • [1] LIU X N, JIN Y, ZHANG W J, Effect of nitrite concentration on the growth and microbial diversity of anaerobic ammonia oxidation (anammox) sludge[J]. Desalination and Water Treatment, 2020, 179: 54-62.

    Google Scholar Pub Med

    [2] MA B, WANG S Y, CAO S B, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990.

    Google Scholar Pub Med

    [3] WEI Y, JIN Y, ZHANG W. Domestic sewage treatment using a one-stage anammox process[J]. International Journal of Environmental Research and Public Health, 2020, 17: 796-805 .

    Google Scholar Pub Med

    [4] ZHANG M, WANG S, JI B, LIU Y. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 692 (2019) 393-401.

    Google Scholar Pub Med

    [5] YU D, ZHANG W. Integration of ANAMMOX into the MBR process for main stream sewage treatment[J]. Journal of Water Supply:Research and Technology-Aqua, 2021, 71: 193-210.

    Google Scholar Pub Med

    [6] 沈明玉, 吴莉娜, 李志, 等. 厌氧氨氧化在废水处理中的研究及应用进展[J]. 中国给水排水, 2019, 35: 16-21. doi: 10.19853/j.zgjsps.1000-4602.2019.06.003

    CrossRef Google Scholar Pub Med

    [7] 王胤, 吴嘉利, 陈一, 等. 主流厌氧氨氧化工艺的研究与应用进展[J]. 净水技术, 2021, 40: 16-27. doi: 10.15890/j.cnki.jsjs.2021.11.003

    CrossRef Google Scholar Pub Med

    [8] HENDRICKX T L G, WANG Y, KAMPMAN C, et al. Autotrophic nitrogen removal from low strength waste water at low temperature[J]. Water Research, 2012, 46: 2187-2193.

    Google Scholar Pub Med

    [9] LEE D S, CHE O J, PARK J M. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Water Research, 2001, 35(16): 3968-3976. doi: 10.1016/S0043-1354(01)00132-4

    CrossRef Google Scholar Pub Med

    [10] GUO Q, XING B S, LI P, et al. Anaerobic ammonium oxidation (anammox) under realistic seasonal temperature variations: Characteristics of biogranules and process performance[J]. Bioresource Technology, 2015, 192: 765-773.

    Google Scholar Pub Med

    [11] LAURENI M, WEISSBRODT D G, SZIVÁK I, et al. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater[J]. Water Research, 2015, 80: 325-336.

    Google Scholar Pub Med

    [12] JETTEN M S M, CIRPUS I, KARTAL B, et al. 1994-2004: 10 years of research on the anaerobic oxidation of ammonium[J]. Biochemical Society Transactions, 2005, 33: 119-123.

    Google Scholar Pub Med

    [13] ZHANG W J, ZHANG Y Y, LI L, et al. Fast start-up of expanded granular sludge bed (EGSB) reactor using stored Anammox sludge[J]. Water Science and Technology, 2014, 69: 1469-1474.

    Google Scholar Pub Med

    [14] ZHANG W J, ZHANG. Y Y, LI L, et al[J]. Fast start-up of expanded granular sludge bed (EGSB) reactor using stored Anammox sludge[J]. Water Science and Technology, 2014, 69: 1469-1474.

    Google Scholar Pub Med

    [15] WANG H, Han J, ZHANG W. Effects of NH4+-N and NO2-N on carbon fixation in an anaerobic ammonium oxidation reactor[J]. Journal of Environmental Management, 2019, 241: 450-457.

    Google Scholar Pub Med

    [16] SUN R L, ZHANG W J. Addition of anaerobic ammonium oxidation bacteria to lower running cost during the membrane bioreactor process treating sewage[J]. Water Science and Technology, 2022, 85: 166-173.

    Google Scholar Pub Med

    [17] WANG Y Y, XIE H C, WANG D L, et al. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration[J]. Water Research, 2019, 162: 258-268.

    Google Scholar Pub Med

    [18] LI M C, SONG Y, SHEN W, et al. The performance of an anaerobic ammonium oxidation upflow anaerobic sludge blanket reactor during natural periodic temperature variations[J]. Bioresource Technology, 2019, 293: 122039.

    Google Scholar Pub Med

    [19] DU R, PENG Y, JI J, et al. Partial denitrification providing nitrite: Opportunities of extending application for anammox[J]. Environment International, 2019, 131: 105001.

    Google Scholar Pub Med

    [20] ZHAO Y P, LIU S F, JIANG B, et al. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia[J]. Environmental Science & Technology, 2018, 52: 11285-11296.

    Google Scholar Pub Med

    [21] GAO R, PENG Y, LI J, et al. Improving performance and efficiency of partial anammox by coupling partial nitrification and partial denitrification (PN/A-PD/A) to treat municipal sewage in a step-feed reactor[J]. Bioresource Technology, 2021, 341: 125804.

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  /  Tables(1)

Article Metrics

Article views(3808) PDF downloads(143) Cited by(0)

Access History

Nitrogen removal performance and mechanism of anammox-MBR coupling process in sewage treatment

Abstract: Anaerobic ammonia oxidation (anammox) process has the problem of unstable treatment efficiency in treating domestic sewage, which seriously hinders its engineering application of sewage treatment. In view of the above problems, this paper proposed to use anammox-MBR (AX-MBR) coupling process to treat sewage, which included anoxic reactor, aerobic reactor and membrane module. During the startup of the experiment, the activated sludge of the sewage treatment plant was added, then the dissolved oxygen of the system was reduced, and the anaerobic ammonia oxidizing bacteria (AnAOB) was added. The results showed that the addition of AnAOB could effectively improve the NH4+-N removal rate of AX-MBR, and the average NH4+-N removal rate increased significantly from 68% to 87%. During the experiment, the temperature of the reactor was not controlled. The results indicated that the activity of AnAOB decreased sharply with decreasing temperature when the temperature was lower than 20 ℃. During the operation in low temperature environment, the way of reducing the influent load could be adopted to ensure the treatment rate. The research data of 15N stable isotope tracer method on the nitrogen removal contribution rate of anammox showed that the nitrogen removal of AX-MBR was mainly completed by the way dominated by anammox, and its nitrogen removal contribution rate could reach 65%. The 16S high throughput sequencing results showed that the AnAOB in the anoxic reactor was mainly Candidatus Kuenenia, and the abundance of denitrifying bacteria in the anoxic reactor and aerobic reactor was greater than that of ammonia-oxidizing bacteria, which indicated that the NO2--N in AX-MBR mainly formed from partial denitrification, which proved the existence of partial denitrification/anammox process.The results of this study can provide reference for the development of anammox process.

  • 厌氧氨氧化 (anaerobic ammonium oxidation,anammox) 是指厌氧或缺氧条件下,厌氧氨氧化菌 (anammox ammonium oxidation bacteria,AnAOB) 以亚硝态氮 (NO2-N) 为电子受体,将氨氮 (NH4+-N) 氧化为氮气 (N2) 的生物过程[1-2]。传统生物脱氮工艺常用来去除生活污水中的氮元素,主要是通过好氧硝化和缺氧反硝化来实现。在好氧阶段,NH4+-N需要充足氧气以实现硝化,而缺氧阶段则需要足够有机碳源进行反硝化,从而使得氮元素的去除过程能耗非常高[3-4]。Anammox技术相较于传统生物脱氮工艺具有无需外加有机碳源、氮去除负荷高、运行费用低、剩余污泥产量低、无二次污染等优点[3, 5],将其应用于生活污水中污染物的去除是污水生物处理领域的研究热点。

    目前,个别生活污水处理厂实现了AnAOB的富集和anammox脱氮。如在新加坡樟宜回用水厂anammox工艺的自养脱氮贡献率为37.5%[6];中国西安第四污水处理厂anammox工艺的脱氮贡献率约为15%[7]。然而,上述污水处理厂的主流工艺并不是anammox,因此,目前尚无一个真正意义上的anammox处理生活污水的工程实例。生活污水存在氨氮浓度较低、冬季水温低 (低于15 ℃,AnAOB活性急剧降低) 等问题[8],使得anammox在工程上存在一定的局限性。低氨氮浓度情况下亚硝酸盐氧化菌 (nitrite oxidizing bacteria,NOB) 的生长速率比氨氧化菌 (ammonium oxidation bacteria,AOB) 高,使得短程硝化过程很难稳定实现[9]。另外,AnAOB最佳生长温度为30~37 ℃,当温度超过45 ℃时AnAOB会出现不可逆失活,而当温度低于15 ℃时反应器内还会因积累大量NO2-N导致反应器失稳[10-11]。因此,如何在低氨氮浓度下保证NH4+-N稳定转化为NO2-N,以及在低温条件下 (尤其是冬季) 如何维持anammox工艺稳定运行是亟需解决的问题。

    针对上述问题,本研究结合传统硝化反硝化系统的稳定性优势,将anammox与MBR工艺耦合,组成一种兼顾低能耗、高负荷的新型生物脱氮工艺 (AX-MBR) ,通过对生活污水进行连续处理分析温度对AX-MBR工艺的脱氮效果,并探究anammox脱氮贡献率和微生物群落结构变化,从而分析系统的脱氮机理,以期为工艺的工程应用提供参考。

    • 本研究采用的AX-MBR装置如图1所示。整个反应器以有机玻璃为主,分为缺氧反应器、好氧反应器、膜组件3个部分。其中,膜组件放置于好氧反应器中。缺氧反应器的有效容积为4 L,长、宽、高为9 cm×9 cm×74 cm;好氧反应器有效容积为6 L,长、宽、高为18 cm×10 cm×50 cm。生活污水先在缺氧反应器中经过微生物处理,再经过好氧反应器中的微生物处理和膜组件过滤。缺氧反应器进水口设置有液位控制器并连接进水泵,用于控制进水。挂膜有AnAOB的聚氨酯填料放置于缺氧反应器,投加量为2 L。2个反应器间设有1台回流泵,膜组件出水通过时间控制器控制。其中,2#和4#为出水调节阀,1#和3#为反冲洗调节阀,用来调节出水和反冲洗时间,二者时间比为9:1。反应器采用黑布遮盖,避免光线对细菌的影响[12]

    • 本研究接种污泥主要来自桂林市雁山污水处理厂,并配以课题组自行培养且具有较好活性的AnAOB,通过方形的聚氨酯填料进行固着[13-14]。实验用水为桂林理工大学的校园生活污水[3]。此外,进水先经过制氮机吹脱降低污水中的溶解氧 (DO) ,以便后续调节、控制反应系统中的DO指标。实验分成3个阶段 (共248 d) 。在I阶段取适量污水厂好氧池内污泥投加入反应器,校园生活污水作为进水,进水TN为70.16~123.25 mg·L−1 ,NH4+-N为42.5~85.6 mg·L−1,COD为110.88~174.72 mg·L−1。在系统启动并稳定运行后,降低好氧反应器DO至0.5 mg·L−1,共运行14 d。在II阶段投加600 mL厌氧氨氧化污泥,并继续保持DO低于0.5 mg·L−1,其余运行条件不变,共计130 d。在III阶段,从第146天开始共运行102 d,主要考察温度对AX-MBR工艺的影响。3个阶段均未对反应器进行温度控制,实验期间的水温为5~35 ℃。水力停留时间 (HRT) 控制在4 h,回流比为1:2,DO小于0.5 mg·L−1,pH为7.45~7.55。

    • NH4+-N:纳氏试剂分光光度法;NO2-N:N-(1-奈基)-乙二胺光度分光光度法;TN:碱性过硫酸钾消解紫外分光光度法;COD:重铬酸钾微波快速密闭消解法;pH/温度:北京天健在线监测DEC数字化pH计DPH10AC;DO:美国哈希便携式溶解氧仪[5, 15]

    • 取AX-MBR系统稳定运行后的污泥并进行预培养以消耗样本中残留的O2和NOx。样品分为3个组,分别为E-0、E-A和E-D。E-0加15NH4+检验预培养过程是否耗尽O2和NOx,并排除由纯化学反应生成N2的可能性;E-A组添加14NO315NH4+检测污泥中anammox反应;E-D组添加15NO3与样品本底的14NH4+发生anammox和反硝化反应,用于定量分析anammox的反应速率和脱氮贡献率。同位素示踪法具体步骤和计算方法参考文献[16]。

    • 对实验不同阶段的污泥进行取样,委托生工生物工程 (上海) 有限公司进行高通量测序分析,以探究微生物多样性和优势菌种的变化,具体测序步骤参考文献[5]。进行3次采样共6个样品,分别取缺氧反应器和好氧反应器的污泥。第一次取样为AX-MBR工艺成功启动并稳定运行 (50 d),分别为Y1、H1;第二次取自III阶段(230 d),主要研究低温环境下群落结构的变化,记为Y2、H2;最后一次取样则是所有实验结束后(248 d),分别是H3、Y3。

    2.   结果与讨论
    • 在AX-MBR工艺运行过程中各氮素质量浓度变化如图2所示。在I阶段通过减少曝气量控制反应器的DO,从0.89 mg·L−1逐渐降至0.5 mg·L−1以下。该阶段出水NH4+-N质量浓度增加,最高为34 mg·L−1,出水NO2-N质量浓度并随之增加。该阶段的AOB对氧的半饱和系数大于NOB,NOB在低DO下竞争氧能力较弱,系统可能由短程硝化的原因产生NO2-N的积累。第II阶段投加了AnAOB污泥后,NH4+-N去除率迅速增加,最后去除率稳定为约89%。这说明anammox作用具有高效脱氮的能力。第III阶段结果表明,随着运行天数的增加,温度降低会导致微生物活性降低,NH4+-N和TN去除率逐渐降低,NH4+-N去除率从最开始的84%将至58%,TN去除率也从67%将至47.28%。这说明温度对AX-MBR的脱氮效率具有较大影响。

      在AX-MBR运行过程中,进水COD约为111~171.36 mg·L−1,出水COD约为21.77~50.4 mg·L−1,降低了58%~80%,可达到城镇污水处理厂污染物排放标准 (GB18918-2002) 的一级标准。从I阶段到III阶段,出水COD没有明显变化,在整个运行过程中保持稳定的处理效果。一方面,反应系统的微生物中存在着消耗有机物质的异养菌;另一方面,膜组件的有效过滤阻断作用也可保证出水COD的稳定性。

    • 为考察温度变化对AX-MBR工艺脱氮性能的影响,将III阶段温度从低到高排列,以间隔5 ℃为一组,探究温度在5~35 ℃时的脱氮情况及厌氧氨氧化和反硝化的脱氮贡献量,结果如图3所示。NH4+-N的平均去除率随温度的增加逐渐由59%增至87%,TN去除率也从49%升至73%。当温度大于20 ℃时,NH4+-N去除率维持在较高水平,平均去除率达85%以上;当温度小于20 ℃时, NH4+-N和TN去除率都有所下降,此时温度降低开始影响微生物基础代谢的能力。这说明反硝化和厌氧氨氧化等脱氮反应速率受温度影响而降低。由于外回流会促进NH4+-N硝化产物NOx-N在缺氧阶段被去除,而且反应器硝化液回流比为1∶2,理论上反硝化的最大脱氮贡献率为33.3%,因此可根据最大的反硝化脱氮贡献率和已知的总脱氮量推导出anammox的脱氮贡献量。当温度为25~30 ℃时,工艺总脱氮量为76.74 mg·L−1,anammox和反硝化作用的脱氮贡献量为51.42 mg·L−1 和25.32 mg·L−1。当温度为20~25 ℃时,工艺总脱氮量下降了17.12 mg·L−1,anammox和反硝化的脱氮量为39.95 mg·L−1和19.67 mg·L−1,当温度为15~20 ℃时,工艺总脱氮量再次降低3.14 mg·L−1。因此,随着温度的降低,微生物活性下降,脱氮量也逐渐降低,但整体上anammox的脱氮贡献率大于反硝化贡献率,anammox和反硝化作用二者同时保证AX-MBR工艺的高效脱氮性能。当温度在20~30 ℃范围内时,温度每下降1 ℃,anammox活性会降低约2.23%,而温度在15~20 ℃时每降低1 ℃,anammox活性下降1.05%。由于AnAOB和反硝化细菌的生存温度范围较广,但细菌的活性受温度影响较大,低温时活性降低,AnAOB和反硝化效率降低。AX-MBR工艺在低温环境运作时,可采用降低进水氮负荷的方法来保证处理效果,其他相关研究也表明可采用提高生物量和降低氮负荷等方式降低低温对AnAOB或其他菌活性的抑制作用[17-18]

    • 本研究通过15N同位素示踪法探究anammox和反硝化脱氮贡献率,验证上述AX-MBR稳定运行过程中各反应的脱氮贡献率。污泥取自稳定运行阶段的缺氧反应器。将污泥先进行离心,超纯水也经氦气吹脱20 min至厌氧状态,最后以1:5的泥水比例混匀,并分为E-0、E-A和E-D 3组。E-0组无29N230N2生成,这表明样品经预处理后NOx消耗殆尽,E-A组29N2产量随时间变化明显积累且30N2无积累,因此该组只存在anammox反应。E-D组均有29N230N2积累,这说明该组同时发生anammox和反硝化反应。由于14NO3的存在使得E-D组的反硝化反应产物包含有28N229N230N2,而anammox的产物只有28N229N2,进而通过30N2的量可以反推出反硝化所产生的N2总量,最后得出anammox的脱氮贡献率和潜在速率。由图4可知,AX-MBR工艺的anammox潜在速率为0.04~0.29 µmol·(L·h)−1,反硝化速率为0.02~0.17 µmol·(L·h)−1,厌氧氨氧化潜在速率较反硝化的速率高。不同反应时间可对应系统的HRT,当反应时间为2 h时,anammox脱氮贡献率为69.83%,并且为最大脱氮贡献率,但微生物反应不充分出水氮素质量浓度较高,不予采用。当反应4 h时,与实际运行HRT一致,此时anammox脱氮贡献率为60.11%。由于微生物作用的系统脱氮贡献率受HRT的影响,故反应进行6 h时的anammox脱氮贡献率增加为64.93%。较长的HRT会导致微生物颗粒污泥发生裂解,故当HRT大于6 h之后,会出现anammox脱氮贡献率下降的趋势。本研究为实验室规模小型反应器,其微生物组成与丰度受人为控制,anammox的脱氮贡献率始终大于反硝化反应,但这也进一步说明AX-MBR工艺中以anammox脱氮为主。

    • 本研究采用16S rDNA高通量测序分析AX-MBR工艺中微生物群落结构及多样性的变化,从微生物的角度阐释其脱氮的机理。表1 通过不同多样性指数来评估微生物多样性特征,耦合系统中各样品的OUT数目变化情况见图5。结合图5表1可知,系统的微生物为适应环境在不断的变化,群落多样性和丰度都在变化,但整体上工艺脱氮效果稳定,具有一定的耐冲击负荷的能力。其中,Y2、H2的特异OTU数目较Y1、H1有变化,主要因为低温环境中微生物优胜劣汰,但也唤醒了反应器内更多的低温菌。从3次样品的多样性指数来看,样品群落结构复杂、物种数目多、丰度较高。从Shannon指数、ACE指数和Chao1指数分析发现Y2、H2的指数值较Y1、H1高。这说明温度变化可能唤醒了工艺中的低温菌,原有优势菌种对温度耐受能力强,故群落多样性和丰度增加。综上所述,系统的微生物为适应环境在不断的变化,群落多样性和丰度都在变化,但整体上污水脱氮处理效果稳定,具有一定的耐冲击负荷的能力。

      实时监测数据显示缺氧和好氧反应器的DO较低。因此,硝化作用及部分硝化驱动的anammox过程造成的氨氮损失是有限的。因此,短程反硝化可能是与anammox结合的主要途径,且导致缺氧和好氧反应器的氨氮损失可能是反硝化和anammox作用。AX-MBR中各样品的分类和系统发育信息可视化、门水平的物种丰度堆叠条形图、属水平的物种丰度柱状图见图6ProteobacteriaPatescibacteriaBacteroidetes门是絮状污泥中含量最多的3个门。这些门已被报道为负责氮和碳循环的典型门,并且已在以前的 PD/A 系统中广泛检测到[19]。在缺氧和好氧反应器污泥样品中,观察到ProteobacteriaBacteroidetesAcidobacteria为优势属。Bacteroidetes占比约40%,但 H3、Y3中Bacteroidetes有所下降。

      图6 (c) 中AnAOB主要为Candidatus Kuenenia,相对丰度为1.7%。Armatimonadetes-gp5属于装甲菌门,与AnAOB菌属存在关联性[20]。由于AnAOB具有生长速率缓慢、低温抑制菌活性等原因,具有anammox的Candidatus Kuenenia菌属对环境温度敏感,其H1、Y1中Candidatus Kuenenia相对丰度较H1、Y1和H3、Y3样品相比最低,说明低温可能会促进NO2-N积累,这与GAO等[21]的研究一致,即PD/A工艺在低温条件下能实现较好的脱氮效果。在属水平中,厌氧和缺氧反应器的反硝化细菌 (AridibacterPseudomonasParacoccus, PlanctomicrobiumBacillusThauera) 丰度远大于AOB丰度,其中AOB (Nitrosomonas) 丰度均小于NOB (Nitrospira) 丰度,故污水中亚硝酸盐主要来源于部分反硝化,这在群落水平上证明了PD/A的存在。

    3.   结论
    • 1) AX-MBR工艺可成功实现anammox工艺应用于处理低氨氮生活污水,工艺运行稳定,NH4+-N去除率可稳定在89%左右,COD去除率稳定在75%左右,出水可达到城镇污水处理厂污染物排放标准 (GB18918-2002) 的一级标准。

      2) 随着季节温度变化,微生物活性下降导致氮元素去除效率逐渐降低,但anammox的脱氮贡献率始终大于反硝化贡献率,这说明anammox脱氮占据主体地位。AX-MBR工艺中anammox和反硝化作用二者同时保证了工艺的高效脱氮性能,这表明AX-MBR工艺可为anammox工艺的工程应用提供参考。

      3) 反应器中微生物群落结构复杂,反硝化细菌丰度大于AOB丰度,且好氧反应器回流至缺氧反应器时给反硝化菌提供NO3,故污水中NO2主要来源于部分反硝化。这在群落水平上证明了PD/A的存在。

    Figure (6)  Table (1) Reference (21)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
  • 表 1  流动电极的比表面积和孔径分布与FCDI脱盐性能的相关性
    Table 1.  Correlation between specific surface area and pore distribution on FCDI desalination performance
    运行模式微孔/(m2·g−1)介孔/(m2·g−1)比表面积/(m2·g−1)外表面积/(m2·g−1)
    rPrPrPrP
    ICC0.3910.2090.842**0.0010.918**00.650*0.022
    SC−0.725**0.0080.583*0.047−0.0730.822−0.2790.379
      注: r是皮尔逊相关系数,P是显著性指数,*表示P<0.05水平上显著;**表示P<0.01水平上显著。
     | Show Table
    DownLoad: CSV