[1]
|
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
Google Scholar
Pub Med
|
[2]
|
WANG Y Y, ZANG B, LI G X, et al. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation[J]. Waste Management, 2016, 53: 62-67. doi: 10.1016/j.wasman.2016.04.018
CrossRef Google Scholar
Pub Med
|
[3]
|
XU F Q, LI Y Y, Ge X M, et al. Anaerobic digestion of food waste – Challenges and opportunities[J]. Bioresource Technology, 2018, 247: 1047-1058. doi: 10.1016/j.biortech.2017.09.020
CrossRef Google Scholar
Pub Med
|
[4]
|
KAYHANIAN M. Ammonia inhibition in high-solids biogasification: An overview and practical solutions[J]. Environmental Technology, 1999, 20(4): 355-365. doi: 10.1080/09593332008616828
CrossRef Google Scholar
Pub Med
|
[5]
|
JIN C X, SUN S Q, YANG D H, et al. Anaerobic digestion: An alternative resource treatment option for food waste in China[J]. Science of the Total Environment, 2021, 779: 146397. doi: 10.1016/j.scitotenv.2021.146397
CrossRef Google Scholar
Pub Med
|
[6]
|
CHAKRABORTY D, KARTHIKEYAN O P, Selvam A, et al. Co-digestion of food waste and chemically enhanced primary treated sludge in a continuous stirred tank reactor[J]. Biomass and Bioenergy, 2017, 111(8): 232-240.
Google Scholar
Pub Med
|
[7]
|
王永会, 赵明星, 阮文权. 餐厨垃圾与剩余污泥混合消化产沼气协同效应[J]. 环境工程学报, 2014, 8(6): 2536-2542.
Google Scholar
Pub Med
|
[8]
|
DE VRIEZE J, PLOVIE K, VERSTRAETE W, et al. Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production[J]. Journal of Environmental Management, 2015, 152: 75-82. doi: 10.1016/j.jenvman.2015.01.029
CrossRef Google Scholar
Pub Med
|
[9]
|
ZHU H G, PARKER W, CONIDI D, et al. Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge[J]. Bioresource Technology. 2011, 102(14): 7086-7092.
Google Scholar
Pub Med
|
[10]
|
段妮娜, 董滨, 李江华, 等. 污泥和餐厨垃圾联合干法中温厌氧消化性能研究[J]. 环境科学, 2013, 34(1): 321-327. doi: 10.13227/j.hjkx.2013.01.060
CrossRef Google Scholar
Pub Med
|
[11]
|
李轶, 李磊, 熊菊元, 等. 餐厨垃圾与牛粪混合厌氧发酵最佳配比筛选[J]. 沈阳农业大学学报, 2012, 43(5): 5. doi: 10.3969/j.issn.1000-1700.2012.05.009
CrossRef Google Scholar
Pub Med
|
[12]
|
ZHANG J X, LOH K C, Lee J, et al. Three-stage anaerobic co-digestion of food waste and horse manure[J]. Scientific Reports, 2017, 7(1): 1269. doi: 10.1038/s41598-017-01408-w
CrossRef Google Scholar
Pub Med
|
[13]
|
MARANON E, CASTRILLON L, QUIROGA G, et al. Co-digestion of cattle manure with food waste and sludge to increase biogas production[J]. Waste Management, 2012, 32(10): 1821-1825. doi: 10.1016/j.wasman.2012.05.033
CrossRef Google Scholar
Pub Med
|
[14]
|
张竣. 餐饮垃圾与渗滤液联合厌氧消化实验研究[D]. 湖北: 华中科技大学, 2016.
Google Scholar
Pub Med
|
[15]
|
朱双燕. 餐饮垃圾与渗滤液联合厌氧消化实验研究[D]. 武汉: 华中科技大学, 2014.
Google Scholar
Pub Med
|
[16]
|
廖筱锋, 朱双艳, 朱菁萍, 等. 渗滤液添加量对餐饮垃圾厌氧消化的影响机制[J]. 环境工程学报, 2016, 10(7): 3835-3840. doi: 10.12030/j.cjee.201502025
CrossRef Google Scholar
Pub Med
|
[17]
|
郭香麟, 左剑恶, 史绪川, 等. 餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J]. 环境科学, 2017, 38(7): 3070-3077. doi: 10.13227/j.hjkx.201612267
CrossRef Google Scholar
Pub Med
|
[18]
|
申兰兰. 餐饮垃圾和玉米秸秆联合厌氧消化实验研究[D]. 湖北: 华中科技大学, 2016.
Google Scholar
Pub Med
|
[19]
|
FENG L. Enhancement of waste activated anaerobic fermentation by carbohydrate substrate addition: the effect of pH[J]. Environment Science Technology, 2009, 43(3): 4373-4380.
Google Scholar
Pub Med
|
[20]
|
GOU C, YANG Z, JING H, et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste[J]. Chemosphere, 2014, 105: 146-151. doi: 10.1016/j.chemosphere.2014.01.018
CrossRef Google Scholar
Pub Med
|
[21]
|
彭爽, 何琴, 李蕾, 等. 底物和中间产物对餐厨垃圾厌氧消化污泥表面张力、黏度和发泡潜能的影响[J]. 环境科学学报, 2017, 37(10): 8. doi: 10.13671/j.hjkxxb.2017.0122
CrossRef Google Scholar
Pub Med
|
[22]
|
邓云盼, 周颖君, 杨波, 等. 餐厨垃圾联合厌氧消化研究进展[J]. 安徽农业科学, 2015(35): 112-114. doi: 10.3969/j.issn.0517-6611.2015.35.040
CrossRef Google Scholar
Pub Med
|
[23]
|
MONTORO S B, LUCAS J, SANTOS D F L, et al. Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production[J]. Journal of Cleaner Production, 2019, 226: 1082-1091. doi: 10.1016/j.jclepro.2019.04.148
CrossRef Google Scholar
Pub Med
|
[24]
|
SUN H, KOVALOVSZKI A, TSAPEKOS P, et al. Co-digestion of Laminaria digitata with cattle manure: A unimodel simulation study of both batch and continuous experiments[J]. Bioresource Technology, 2019, 276: 361-368. doi: 10.1016/j.biortech.2018.12.110
CrossRef Google Scholar
Pub Med
|
[25]
|
WANG Z Q, YUN S, XU H F, et al. Mesophilic anaerobic co-digestion of acorn slag waste with dairy manure in a batch digester: Focusing on mixing ratios and bio-based carbon accelerants[J]. Bioresource Technology, 2019, 286: 121394. doi: 10.1016/j.biortech.2019.121394
CrossRef Google Scholar
Pub Med
|
[26]
|
MA G L, NDEGWA P, HARRISON J H, et al. Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis[J]. Science of The Total Environment, 2020, 728: 138224. doi: 10.1016/j.scitotenv.2020.138224
CrossRef Google Scholar
Pub Med
|
[27]
|
VIEGAS C, NOBRE C, MOTA A, et al. A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105187. doi: 10.1016/j.jece.2021.105187
CrossRef Google Scholar
Pub Med
|
[28]
|
廖筱锋, 卢加伟, 万惠丹, 等. 联合厌氧消化改善渗沥液可生化性实验研究[J]. 环境卫生工程, 2010, 18(5): 12-14. doi: 10.3969/j.issn.1005-8206.2010.05.005
CrossRef Google Scholar
Pub Med
|
[29]
|
汪伟. 生物质垃圾与填埋场渗滤液联合厌氧消化实验研究[D]. 湖北: 华中科技大学, 2012.
Google Scholar
Pub Med
|
[30]
|
ZHANG W L, ZHANG L, LI A L. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: process performance and synergistic effects[J]. Chemical Engineering Journal, 2015, 259: 795-805. doi: 10.1016/j.cej.2014.08.039
CrossRef Google Scholar
Pub Med
|
[31]
|
廖筱锋. 餐厨垃圾与渗滤液联合厌氧消化协同增效机制研究[D]. 湖北: 华中科技大学, 2017.
Google Scholar
Pub Med
|
[32]
|
周祺, 刘研萍, 邹德勋, 等. 餐厨垃圾与玉米秸秆联合厌氧消化产甲烷性能的试验研究[J]. 中国沼气, 2014(1): 27-31. doi: 10.3969/j.issn.1000-1166.2014.01.006
CrossRef Google Scholar
Pub Med
|
[33]
|
陈雪, 袁海荣, 邹德勋, 等. 餐厨垃圾和稻草两相厌氧发酵及其动力学[J]. 环境工程学报, 2015, 9(5): 2405-2411. doi: 10.12030/j.cjee.20150561
CrossRef Google Scholar
Pub Med
|
[34]
|
王凯军, 王婧瑶, 左剑恶, 吴静, 李坤. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报, 2020, 14(7): 1735-1742. doi: 10.12030/j.cjee.201911085
CrossRef Google Scholar
Pub Med
|
[35]
|
谷士艳, 于美玲, 寇巍, 等. 猪粪与餐厨废弃物混合厌氧消化工艺优化研究[J]. 可再生能源, 2015, 33(2): 308-313. doi: 10.13941/j.cnki.21-1469/tk.2015.02.024
CrossRef Google Scholar
Pub Med
|
[36]
|
REN G X, MAO C L, ZHAI N, et al. A new adjustment strategy to relieve inhibition during anaerobic co-digestion of food waste and cow manure[J]. Sustainability, 2019, 11(10): 1-14.
Google Scholar
Pub Med
|
[37]
|
CHEN G Y, LIU G, YAN B B, et al. Experimental study of co-digestion of food waste and tall fescue for bio-gas production[J]. Renewable Energy, 2016, 88: 273-279. doi: 10.1016/j.renene.2015.11.035
CrossRef Google Scholar
Pub Med
|
[38]
|
ZHANG C S, XIAO G, PENG L Y, et al. The anaerobic co-digestion of food waste and cattle manure[J]. Bioresource Technology, 2013, 129(10): 170-176.
Google Scholar
Pub Med
|
[39]
|
LI Y Q, ZHANG R H, LIU X Y, et al. Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure[J]. Energy & Fuels, 2013, 27(4): 2085-2091.
Google Scholar
Pub Med
|
[40]
|
PAN Y, ZHI Z, ZHEN G, et al. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms[J]. Fuel, 2019, 253: 40-49.
Google Scholar
Pub Med
|
[41]
|
DAI X, DUAN N, DOG B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance[J]. Waste Management, 2013, 33(2): 308-316. doi: 10.1016/j.wasman.2012.10.018
CrossRef Google Scholar
Pub Med
|
[42]
|
ZHANG L, LEE Y W, JAHNG D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements[J]. Bioresource Technology, 2011, 102(8): 5048-5059. doi: 10.1016/j.biortech.2011.01.082
CrossRef Google Scholar
Pub Med
|
[43]
|
WEI Q Y, ZHANG W Q, GUO J B, et al. Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: Effect of trace elements on the digester recovery and stability[J]. Chemosphere, 2014, 117: 477-485. doi: 10.1016/j.chemosphere.2014.08.060
CrossRef Google Scholar
Pub Med
|
[44]
|
EVRANOS B, DEMIREL B. The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage[J]. Environmental Technology, 2015, 36(12): 1556-1562. doi: 10.1080/09593330.2014.997297
CrossRef Google Scholar
Pub Med
|
[45]
|
KHALID A, ARSHAD M, ANJUM M, et al. The anaerobic digestion of solid organic waste[J]. Waste Management, 2011, 31(8): 1737-1744. doi: 10.1016/j.wasman.2011.03.021
CrossRef Google Scholar
Pub Med
|
[46]
|
ZHANG W Q, WU S B, GUO J B, et al. Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: Role of trace elements[J]. Bioresource Technology, 2015, 178: 297-305. doi: 10.1016/j.biortech.2014.08.046
CrossRef Google Scholar
Pub Med
|
[47]
|
RAJAGOPAL R, DI MASSE, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia - ScienceDirect[J]. Bioresource Technology, 2013, 143(17): 632-641.
Google Scholar
Pub Med
|
[48]
|
LI R, LI C X. Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system[J]. Applied Biochemistry& Biotechnology, 2010, 160(2): 643-654.
Google Scholar
Pub Med
|
[49]
|
LIU C, WANG W, ANWAR N, et al. Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions[J]. Energy & Fuels, 2017, 31(3): 2976-2984.
Google Scholar
Pub Med
|
[50]
|
LEE J, HONG J, JEONG S, et al. Interactions between substrate characteristics and microbial communities on biogas production yield and rate[J]. Bioresource Technology, 2020, 303(7): 122934.
Google Scholar
Pub Med
|
[51]
|
BLASIUS J P, CASTRO M, MAINTINGUER S I, et al. Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste[J]. Biotechnology Reports, 2020, 27: 503.
Google Scholar
Pub Med
|
[52]
|
MATHERI A N, BELAID M, SEODIGENG T, et al. Modelling the Kinetics of Biogas Production from Co-digestion of Pig waste and Grass clippings[M]. 2016, 201-203.
Google Scholar
Pub Med
|
[53]
|
YANG Y Q, SHEN D S, LI N. Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion.[J]. Environmental Science & Pollution Research, 2013, 20(4): 2162-2171.
Google Scholar
Pub Med
|
[54]
|
ZALA M, SOLANKI R, BHALE P V, et al. Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition[J]. Biomass Conversion and Biorefinery, 2020, 10(3): 707-714. doi: 10.1007/s13399-019-00522-1
CrossRef Google Scholar
Pub Med
|
[55]
|
LEE E, BITTENCOURT P, Casimir L, et al. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge[J]. Waste Management, 2019, 95: 432-439. doi: 10.1016/j.wasman.2019.06.033
CrossRef Google Scholar
Pub Med
|
[56]
|
LUO J H, QIAN G R, LIU J Y, et al. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 21-28. doi: 10.1016/j.rser.2015.04.053
CrossRef Google Scholar
Pub Med
|
[57]
|
CAVINATO C, BOLZONELLA D, PAVAN P, et al. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors[J]. Renewable Energy, 2013, 55: 260-265. doi: 10.1016/j.renene.2012.12.044
CrossRef Google Scholar
Pub Med
|
[58]
|
XING W, ZHAO Y C. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process[J]. International Journal of Hydrogen Energy, 2009, 34(1): 245-254. doi: 10.1016/j.ijhydene.2008.09.100
CrossRef Google Scholar
Pub Med
|
[59]
|
MARIN J, KENNEDY K J, ESKICIOGLU C. Effect of microwave irradiation on anaerobic degradability of model kitchen waste[J]. Waste Management, 2010, 30(10): 1772-1779. doi: 10.1016/j.wasman.2010.01.033
CrossRef Google Scholar
Pub Med
|
[60]
|
AGYEMAN F O, TAO W. Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate[J]. Journal of Environmental Management, 2014, 133: 268-274.
Google Scholar
Pub Med
|
[61]
|
Izumi K, OKISHIO Y, Nagao N, et al. Effects of particle size on anaerobic digestion of food waste[J]. International Biodeterioration & Biodegradation, 2010, 64(7): 601-608.
Google Scholar
Pub Med
|
[62]
|
PROROT A, JULIEN L, CHRISTOPHE D, et al. Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach[J]. Biochemical Engineering Journal, 2011, 54(3): 178-184. doi: 10.1016/j.bej.2011.02.016
CrossRef Google Scholar
Pub Med
|
[63]
|
LI Y B, GUO L S, HUANG D K, et al. Support-dependent active species formation for CuO catalysts: Leading to efficient pollutant degradation in alkaline conditions[J]. Journal of Hazardous Materials, 2017, 328: 56-62. doi: 10.1016/j.jhazmat.2016.12.063
CrossRef Google Scholar
Pub Med
|
[64]
|
ARIUNBAATAR J, PANICO A, YEH D H, et al. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating[J]. Waste Management, 2015, 46: 176-181. doi: 10.1016/j.wasman.2015.07.045
CrossRef Google Scholar
Pub Med
|
[65]
|
LIN Y Q, WANG D H, LIANG J J, et al. Mesophilic anaerobic co-digestion of pulp and paper sludge and food waste for methane production in a fed-batch basis[J]. Environmental Technology, 2012, 33(23): 2627-2633. doi: 10.1080/09593330.2012.673012
CrossRef Google Scholar
Pub Med
|
[66]
|
QUIOGA G, CASTRILLON L, FERNANDEZ-NAVA Y, et al. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge[J]. Bioresource Technology, 2014, 154: 74-79. doi: 10.1016/j.biortech.2013.11.096
CrossRef Google Scholar
Pub Med
|
[67]
|
CEASRO A, NADDEO V, AMODIO V, et al. Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis[J]. Ultrasonics Sonochemistry, 2012, 19(3): 596-600. doi: 10.1016/j.ultsonch.2011.09.002
CrossRef Google Scholar
Pub Med
|
[68]
|
BEGUM S, ANUPOJU G R, ESHTIAGHI N. Anaerobic co-digestion of food waste and cardboard in different mixing ratios: Impact of ultrasound pre-treatment on soluble organic matter and biogas generation potential at varying food to inoculum ratios[J]. Biochemical Engineering Journal, 2021, 166: 107853.
Google Scholar
Pub Med
|
[69]
|
A Q Z, B F S A, A H Y, et al. Minimizing asynchronism to improve the performances of anaerobic co-digestion of food waste and corn stover[J]. Bioresource Technology. 2014, 166: 31-36.
Google Scholar
Pub Med
|
[70]
|
IQBAL S A, RAHAMAN S, RAHMAN M, et al. Anaerobic digestion of kitchen waste to produce biogas[J]. Procedia Engineering, 2014, 90: 657-662. doi: 10.1016/j.proeng.2014.11.787
CrossRef Google Scholar
Pub Med
|
[71]
|
陈沂塽, 魏桃员, 周涛, 等. 电化学预处理餐厨垃圾-污泥耦合厌氧发酵产挥发性脂肪酸的影响[J]. 环境工程, 2021, 39(9): 187-192.
Google Scholar
Pub Med
|
[72]
|
WANG D, AI J, Shen F, et al. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost[J]. Bioresource Technology, 2017, 227: 286-296. doi: 10.1016/j.biortech.2016.12.060
CrossRef Google Scholar
Pub Med
|
[73]
|
YE M, LIU J, MA C, et al. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review[J]. Journal of Cleaner Production, 2018, 192: 316-326. doi: 10.1016/j.jclepro.2018.04.244
CrossRef Google Scholar
Pub Med
|
[74]
|
YAN S B, LI J, CHEN X S, et al. Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate[J]. Renewable Energy, 2011, 36(4): 1259-1265. doi: 10.1016/j.renene.2010.08.020
CrossRef Google Scholar
Pub Med
|
[75]
|
HAN W, YE M, ZHU A J, et al. A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste[J]. Journal of Cleaner Production, 2016, 112: 3744-3749. doi: 10.1016/j.jclepro.2015.08.072
CrossRef Google Scholar
Pub Med
|
[76]
|
HAN W, YE M, ZHU A J, et al. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production[J]. Bioresource Technology, 2015, 191: 24-29. doi: 10.1016/j.biortech.2015.04.120
CrossRef Google Scholar
Pub Med
|
[77]
|
MENG Y, LUAN F B, YUAN H R, et al. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment[J]. Bioresource Technology, 2017, 224: 48-55. doi: 10.1016/j.biortech.2016.10.052
CrossRef Google Scholar
Pub Med
|
[78]
|
姜谦, 张衍, 刘和. 导电碳颗粒促进污泥厌氧消化及微生物种间电子传递的研究进展[J]. 微生物学通报, 2019, 46(8): 1998-2008. doi: 10.13344/j.microbiol.china.190323
CrossRef Google Scholar
Pub Med
|
[79]
|
LIANG J L, LUO L W, Wong J W C, et al. Recent advances in conductive materials amended anaerobic co-digestion of food waste and municipal organic solid waste: Roles, mechanisms, and potential application[J]. Bioresource Technology, 2022, 360: 127613.
Google Scholar
Pub Med
|
[80]
|
YAMADA C, KATO S, UENO Y, et al. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate[J]. Journal of bioscience and bioengineering, 2015, 119(6): 678-682. doi: 10.1016/j.jbiosc.2014.11.001
CrossRef Google Scholar
Pub Med
|