Processing math: 100%

SANG Yimin, HE Liao, YU Wang, MA Fujun, ZHU Ling, JIAO Yuhai, GU Qingbao. Charring behaviors and their influence of organic contaminated soil during thermal treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2181-2190. doi: 10.12030/j.cjee.202010086
Citation: SANG Yimin, HE Liao, YU Wang, MA Fujun, ZHU Ling, JIAO Yuhai, GU Qingbao. Charring behaviors and their influence of organic contaminated soil during thermal treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2181-2190. doi: 10.12030/j.cjee.202010086

Charring behaviors and their influence of organic contaminated soil during thermal treatment

  • Corresponding author: SANG Yimin, sangyimin@bipt.edu.cn
  • Received Date: 18/10/2020
    Available Online: 10/07/2021
  • Thermal treatment technologies occupy a high domestic/foreign market share, and have become the main remediation technology of organic contaminated sites. Though many studies and concerns are focused on the process, parameters, energy, effect, cost and application of thermal treatment, there are few literature reports on the charring behaviors in the thermochemical conversion of organic pollutants. The charring behaviors may improve reusability of soil and affect process parameters of thermal treatment. Four types of charring reactions and their mechanisms are shown in this paper, and the charring behaviors of petroleum hydrocarbons and aromatic compounds during thermal treatment are reviewed. The effects of organic pollutants charring on soil reusability is summarized, and the improvement of biochar to soil fertility is analysed. Based on the mentioned above, several important research topics of charring process during thermal treatment of organic contaminated soil are proposed.
  • 砷来源广泛,包括火山喷发、岩石风化等自然来源以及采矿、冶金等人为来源[1-2]。在全球范围内,土壤中砷的平均质量分数为1.8 mg·kg−1,而我国土壤中砷平均质量分数达到9.2 mg·kg−1,超过世界水平的5倍[3]。我国云南、贵州、四川等西南地区的土壤中砷背景值远超全国土壤背景值[4]。土壤中的砷通过食物链进入人体后,可引发色素沉着、慢性肺病、心血管疾病和神经系统紊乱等健康问题[5]。因此,对砷污染土壤的修复十分迫切。

    电动修复是常用的一种砷污染土壤修复方法,其利用电渗析、电迁移等电动效应使砷酸根和亚砷酸根定向迁移,从而降低土壤中砷的总量[6-7]。但常规电动修复技术对砷的修复效果有限,KARACA等[8]对沉积物中的砷进行电动修复时发现,运行18 d后砷几乎没有被去除。电极逼近法为电动修复的一种,其在电动过程中每隔一段时间将电极向某一方向移动一定距离,以此来影响土壤pH、氧化还原电位 (Eh) 等环境因子,而砷的溶解性和迁移性与环境因子密切相关。YAO等[9]发现,相比于固定电极法 (FE-EK) ,阴极逼近法 (AC-EK) 通过提高阴极区域pH可将砷的去除率提高4倍。付博等[10]发现,当pH<4时,随着pH的降低,粗砂和细砂中砷的溶出量不断增加。周一敏等[11]发现,当Eh较低时,五价砷[As(V)]会转化为移动性更高的三价砷[As(III)],另外还能驱动土壤中砷的释放。由此可见,电动逼近技术对提高砷污染土壤修复效果具有很大潜力。

    目前,常采用向土壤中加入化学药剂[2,7]、增设渗透反应墙[6,12]等方式提高砷去除率,但基于电极逼近技术对砷污染土壤进行修复的研究尚很缺乏。基于此,本研究采用不同的电极逼近方式对砷污染土壤进行修复。研究不同逼近方式对总砷[As(T)]的分布以及As(III)、As(V)迁移转化的影响,探究捕集室土壤中砷赋存形态的转化,以期为砷污染场地修复提供技术参考和理论依据。

    供试土壤采自辽宁大连某污染场地,经风干并研磨后过20目标准筛备用。供试土壤基本理化性质为:pH为7.17,Eh为273.5 mV,电导率为2 012.5 μS·cm−1,Al、Fe、Ca质量分数分别为40.13、44.17、102.55 g·kg−1,As(T)、As(III)、As(V)质量分数分别为355.08、120.32、234.76 mg·kg−1。其中,As(T)质量分数超过《土壤环境质量 建设用地土壤污染风险管控标准 (试行) 》 (GB 36600-2018) [13]第一类用地筛选值 (20 mg·kg−1) 的17倍。

    图1(a)所示,实验装置主体由土壤室和捕集室组成,捕集室置于实验装置中部,可自由取出,2侧为土壤室。取样点位置如图1(b)所示,从阳极到阴极划分为阳极区 (S1~S3) 、捕集室 (S4) 、阴极区 (S5~S7) 3部分,S1~S7每个区域设置3个取样点,将3个取样点的土壤混合后作为该区域的代表性土壤。

    图 1  实验装置及取样点位置
    Figure 1.  Schematic diagram of experimental setup and sampling positions

    实验共设置4个电动处理组,分别为FE-EK、AC-EK、阳极逼近处理组 (AA-EK) 、两极逼近处理组 (AAC-EK) 。其中,FE-EK处理组不移动电极;AC-EK处理组的阴极电极每隔10 d向阳极方向移动4 cm,共移动2次;AA-EK处理组的阳极电极每隔10 d向阴极方向移动4 cm,共移动2次;AAC-EK处理组的阳极电极和阴极电极每隔10 d相向各移动4 cm,共移动2次。各电动处理组土壤室内均填装1 600 g污染土壤,捕集室内填装400 g混有质量分数为20% Fe2O3的污染土壤。另取400 g混有Fe2O3的污染土壤,不通电,作为电动处理组的对照组 (CK) 。

    实验以不锈钢电极为电极,电压恒定为24 V,处理时间30 d。实验过程中每隔4~5 d采用重量法补充去离子水,保持土壤含水率为30%。取样间隔为10 d,移动电极后的无电场区域不再继续取样。

    本研究中总能耗和单位修复能耗的计算方法见式(1)和式(2)[14]

    E=UIdt (1)

    式中:E为总能耗,kWh;U为实验电压,V;I为电流,A;t为修复时间,h。

    E0=E(c30c0)×m) (2)

    式中:E0为单位修复能耗,kWh·mg−1c0c30为第0 天和第30天时捕集室中As(T)质量分数,mg·kg−1m为捕集室中土壤质量,kg。

    电流使用电流监控装置监测并记录。pH和电导率使用pH计 (PHS-3C型,上海仪电科学仪器股份有限公司) 和电导率仪 (CON700,美国Eutech公司) 测定[6]Eh参考《土壤 氧化还原电位的测定 电位法》 (HJ 746—2015) [15],使用便携式ORP测定仪 (TR-901型,上海仪电科学仪器股份有限公司) 测定。As(T)质量分数利用HNO3-HF-HClO4对土壤进行分步消解[16],并用电感耦合等离子体质谱仪 (ICAPRQ,美国Thermo Fisher Scientific公司) 测定。As(III)质量分数参考ZHENG等[17]以及张静等[18]的提取方法,并用原子荧光光谱仪 (AFS-9700A,北京海光仪器有限公司) 测定[19]。As(V)质量分数为As(T)与As(III)的差值。砷赋存形态参考XU等[7]的方法依次提取可交换态砷 (Ex-As) 、铝结合态砷 (Al-As) 、铁结合态砷 (Fe-As) 以及钙结合态砷 (Ca-As) ,并用ICP-OES (Avio 220 Max,美国PerkinElmer公司) 测定。残渣态砷 (Res-As) 测定方法同As(T)。

    图2所示,各处理组在移动电极前的电流值相似,表明各处理组间的平行性较好。通电后电流在短时间内即达到最大值,约为100 mA;随后电流值迅速下降,至第5 d时仅为9.42~14.04 mA;第5 d补水后电流值又迅速上升。这是因为,电动初始时土壤中含有大量可移动离子;而后电解水产生的H+和OH被不断中和,孔隙水中的离子强度降低[9];补水后土壤中的可移动离子数量又有所增加 [20-21]。电导率常用来表示土壤孔隙液中溶解离子的数量[22]。各处理组的电导率变化如图3所示,表现为两极高、中间低。这归因于阴离子和阳离子不断迁往两极[6],降低了中间区域可溶性离子数量。各处理组电导率在S1、S4、S5区域存在显著差异 (p<0.05) 。

    图 2  实验过程中电流变化
    Figure 2.  Current changes during experiment
    图 3  电动修复后土壤电导率分布
    Figure 3.  Distribution of conductivity in soil after electrokinetic treatment

    运行10 d后,电极逼近处理组的电流值高于固定电极处理组,以第20 d为例,FE-EK、AC-EK、AA-EK以及AAC-EK的电流值分别为27.36、42.64、50.74、57.68 mA。这主要是因为,随着电极的移动,土壤有效长度缩短,提高了系统电流[9]。因AAC-EK的两极间距最短,所以AAC-EK的电流值又高于AC-EK和AA-EK。AC-EK的电流值低于AA-EK主要是因为AC-EK能提高阴极区pH,容易生成氢氧化物、碳酸盐等不溶性和非导电物质,降低系统电流[21]

    土壤室土壤初始pH为7.17,捕集室土壤初始pH为7.11。如图4所示,土壤pH从阳极至阴极呈逐渐增大趋势,且阴极区变化幅度高于阳极区。这是因为,在外加电场作用下,阳极和阴极因发生水解反应分别生成H+和OH−[9]。AA-EK能够促进阳极区pH降低,例如其S2区域在10~20 d降低0.47,高于FE-EK下降幅度,但AA-EK并未能阻止阴极区的pH升高,这可能是由于土壤的酸缓冲性能较高,向阴极移动的H+在到达阴极区前就被消耗殆尽。反之,AC-EK的阴极电极不断向阳极靠近,使其阴极区pH随时间的推移逐渐升高。由于AAC-EK电流值最高,导致其S2~S6区域的pH变化幅度一般高于AC-EK、AA-EK或FE-EK。

    图 4  实验过程中pH变化
    Figure 4.  pH changes during experiment

    图5所示,土壤室土壤初始Eh为273.5 mV,捕集室土壤初始Eh为282.5 mV。电动结束后,土壤Eh表现为从阳极到阴极逐渐降低的分布趋势。其中,S1~S5区域的Eh一般高于初始值,S6~S7区域的Eh低于初始值。阳极Eh的升高主要源于水电解反应产生的氧气及活性自由基;而阴极Eh的降低主要源于水解反应产生氢气,使阴极土壤处于还原气氛。与FE-EK相比,阳极电极的移动促进阳极区Eh升高,而阴极电极的移动促进阴极区Eh降低。以AC-EK为例,其第30 d时S5区域的Eh比FE-EK低147 mV,与SHEN等[23]的研究结果一致。

    图 5  实验过程中Eh变化
    Figure 5.  Eh changes during experiment

    图6所示,土壤室土壤初始As(T)质量分数为355.08 mg·kg−1,捕集室土壤初始As(T)质量分数为283.97 mg·kg−1。修复过程中,土壤中As(T)从两极区域向中间区域聚集,并最终呈现两极低、中间高的分布趋势。As(T)分布的变化是因为,As(T)在电场作用下同时受到电迁移和电渗析作用,一方面,带负电荷的H2AsO4、HAsO42−、H2AsO3等随电迁移迁往阳极;另一方面,溶解于土壤孔隙水中的砷随电渗流迁往阴极[24],导致两极及其附近区域As(T)质量分数降低。由于土壤中对砷吸附能力较强的铝、铁、钙等元素较多,可与砷形成不可移动的沉淀,导致砷移动性显著降低;此外,捕集室中Fe2O3对砷具有很强的吸附能力,迁移至此的砷难以继续向两极迁移,使得捕集室中As(T)质量分数不断升高。运行30 d后,AC-EK、AA-EK以及AAC-EK捕集室中As(T)质量分数与初始值相比显著升高 (p<0.05) ,S1、S7区域As(T)质量分数显著性降低 (p<0.05),以AAC-EK处理组As(T)质量分数显著性降低点位最多 (S1、S2、S5、S6、S7) ,而FE-EK捕集室中As(T)质量分数与初始值相比无显著性差异 (p>0.05) ,仅S1区域As(T)显著性降低 (p<0.05) ,这表明电极逼近对As(T)的迁移具有显著促进作用。

    图 6  土壤中As(T)分布
    Figure 6.  Distributions of As(T) in soil

    运行30 d后,FE-EK的As(T)整体迁移率最低 (15.38%) ,AAC-EK的As(T)整体迁移率最高 (31.50%) ,AC-EK与AA-EK居于2者之间 (27.25%、21.65%) 。AC-EK之所以能促进砷的迁移主要因为以下几个方面:首先,电极间距的缩短增大了系统电流,加速了砷的迁移;其次,阴极电极的移动增大了阴极区土壤pH,使土壤对带负电荷的砷酸根和亚砷酸根吸附能力减弱[2],且OH能置换出以含氧阴离子形式存在的砷[25];此外,阴极电极的移动还降低了土壤Eh,使Fe(III)向Fe(II)转化,Fe(OH)3等铁系物因此发生溶解[26],砷因失去吸附相被释放到土壤溶液中,有利于砷的迁移。AA-EK因电极间距的缩短增大了系统电流,同样能促进As(T)的迁移;但因为其阳极区域pH不断降低,增强了土壤对砷的吸附,导致促进效果不明显。虽然AAC-EK阳极区pH也较低,但它的电流值最高,且其阴极区pH最高,Eh最低,有利于砷的解吸,所以AAC-EK对As(T)的迁移效果优于AC-EK和AA-EK。

    图7所示,FE-EK、AC-EK、AA-EK、AAC-EK的总电能耗依次为373.46、449.59、496.46、572.64 kWh,单位修复能耗依次为7.98、4.47、6.44、4.18 kWh·mg−1。可见,总电能耗最高的AAC-EK的单位修复能耗最低。这是因为,当电压一定时,单位修复能耗除了与电流强度有关还与污染物迁移量有关,AAC-EK捕集室中的As(T)的增加量为FE-EK的2.93倍。

    图 7  不同电动处理组总能耗及单位修复能耗
    Figure 7.  Total energy consumption and energy consumption per unit of remediation of different electrokinetic treatments

    初始土壤中,As(V)为无机砷的主要形式,约为As(III)的1.95倍。电动处理30 d后As(V)的分布如图8(a)所示。As(V)表现为中间高、两极低的分布趋势,FE-EK、AC-EK、AA-EK、AAC-EK捕集室中As(V)质量分数依次升高60.62%、120.61%、93.99%、162.86%。这是因为,阴极带负电荷的As(V)不断移向阳极,在迁移过程中,pH逐渐降低,As(V)迁移能力随之下降;且中间区域的Fe2O3对As(V)有强亲和力,导致As(V)移动至捕集室后难以继续移动,并最终停滞在捕集室;另外,由于电渗析流会带动部分溶解于土壤间隙液中As(V)向阴极迁移,导致阳极区的As(V)也有不同程度的降低。各处理组间As(V)分布差异主要集中在阴极区,AC-EK和AAC-EK能够升高阴极区pH,进而提高砷的移动性,所以这2个处理组阴极区的As(V)质量分数低于AA-EK和FE-EK;又因为AA-EK电流较大,所以其阴极区的As(V)质量分数又低于FE-EK。

    图 8  电动结束后土壤中As(V)和As(III)分布
    Figure 8.  Distributions of As(V) and As(III) in soil after electrokinetic treatment

    As(III)的分布如图8(b)所示。As(III)与As(V)分布趋势一致,为中间高、两极低。这是因为,阳极区土壤pH<9.2,As(III)以不带电的分子形式 (H3AsO3) 存在,主要受电渗析作用迁往阴极[27];在阴极区,越接近阴极土壤pH越高,As(III)又以分子形式向含氧酸根形式转化,带负电荷的亚砷酸根 (H2AsO3、HAsO32、AsO33−) 逐渐增多,并随电迁移迁往阳极,导致S6、S7区域的As(III)质量分数低于S5区域。对比来看,各处理组阳极区As(III)质量分数从低到高依次为AAC-EK、AA-EK、AC-EK、FE-EK。处理组间的差异可能与电流强度有关,当电流较大时电渗析作用较强,更多的As(III)受电渗析作用迁移向阴极,所以电流越大阳极区的As(III)残留量越低,同时使得捕集室中As(III)质量分数越高。

    由于土壤Eh普遍升高,导致部分As(III)转化为As(V)。运行30 d后,FE-EK、AC-EK、AA-EK、AAC-EK各点位As(III)平均质量分数较初始值分别降低9.78%、7.81%、13.65%、4.09%。与此同时,As(V)质量分数随之升高。有研究指出,As(III)的毒性高于As(V)[3],因此,经电动修复土壤中砷的毒性被降低。比较而言,AA-EK因能提高阳极区Eh,所以对As(III)的削减量最高;AAC-EK虽然也能提高阳极区Eh,但其阴极区Eh明显降低,所以对As(III)的总体削减效果较差。

    各处理组捕集室中砷的形态分布如图9所示。初始土壤中各形态砷占比从低到高依次为Ex-As (0.84%)、Al-As (5.16%)、Fe-As (9.05%)、Res-As (40.88%)、Ca-As (44.07%)。砷在电场的作用下不断向捕集室中迁移,并在Fe2O3的作用下发生赋存形态的明显转化,表现为Ex-As、Al-As、Ca-As占比下降,Fe-As和Res-As占比上升。对比各处理组砷赋存形态占比可知,FE-EK处理组的Ex-As最终占比最高,AA-EK、AAC-EK处理组的Ex-As最终占比较低,分别为0.44%和0.36%;FE-EK处理组的Res-As最终占比最低,AAC-EK处理组Res-As占比最终最高,达64.98%,为CK的1.42倍。

    图 9  捕集室中砷形态变化
    Figure 9.  Fractionation change of arsenic in capture chamber

    Ex-As占比的降低是因为Fe2O3的加入为砷提供了更多的吸附位点,使Ex-As转化为Fe-As。由于AA-EK、AAC-EK的电流较大,且阳极区pH相对较低,电极腐蚀后产生的Fe2+/Fe3+在随电迁移迁往阴极的过程中因pH逐渐增大而被沉淀于捕集室中,进一步加强了对Ex-As的吸附,导致其Ex-As占比较低。Al-As占比的降低也可能是受Fe2O3的影响。胡丽琼等[28]研究发现,当向砷污染水稻土中加入Fe2O3的量达到0.5 mg·kg−1时,Al-As已降至检测限以下。Res-As占比的升高一方面是由于Al-As、Ca-As向Res-As转化;另一方面,砷被铁吸附后形成Fe-As双核或单基配体化合物,或通过发生化学反应使沉淀于铁氧化物表面的砷酸盐形成砷酸铁沉淀,进而生成Res-As [29-31]。不同赋存形态砷的生物有效性从大到小依次为Ex-As>Ca-As>Al-As>Fe-As>Res-As[29]。可见,经电动修复后,砷的生物有效性大幅度降低。因AAC-EK处理组Ex-As占比最低,Res-As占比最高,所以处理效果最好。

    1) 相比于固定电极,3种电极逼近方式通过影响环境因子 (pH、Eh) 以及系统电流,对As(T)的迁移具有促进作用,以AAC-EK的As(T)整体迁移率最高 (31.50%) ,且单位修复能耗最低。

    2) 砷的价态转化受Eh影响,电动修复后,各处理组As(III)平均质量分数较初始值有所降低,As(V)平均质量分数较初始值有所升高。

    3) 电动联合Fe2O3施用可使砷的形态从Ex-As、Al-As、Ca-As向Fe-As、Res-As转化,降低捕集室中的砷的生物有效性,以AAC-EK的稳定化效果最佳。由此可见,AAC-EK在修复砷污染土壤方面具备很大潜力。

  • [1] 赵涛, 马刚平, 周宇, 等. 多环芳烃类污染土壤热脱附修复技术应用研究[J]. 环境工程, 2017, 35(11): 178-181.

    Google Scholar Pub Med

    [2] LIU J, ZHANG H, YAO Z, et al. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln[J]. Chemosphere, 2019, 220: 1041-1046. doi: 10.1016/j.chemosphere.2019.01.031

    CrossRef Google Scholar Pub Med

    [3] 蒋村, 孟宪荣, 施维林, 等. 氯苯污染土壤低温原位热脱附修复[J]. 环境工程学报, 2019, 13(7): 1720-1726.

    Google Scholar Pub Med

    [4] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036.

    Google Scholar Pub Med

    [5] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Thermal treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2(4): 426-437. doi: 10.1016/J.ENG.2016.04.005

    CrossRef Google Scholar Pub Med

    [6] KIERSCH K, KRUSE J, REGIER T Z, et al. Temperature resolved alteration of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS[J]. Thermochimica Acta, 2012, 537: 36-43.

    Google Scholar Pub Med

    [7] BÁRCENAS-MORENO G, BÅÅTH E. Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities[J]. Soil Biology and Biochemistry, 2009, 41(12): 2517-2526. doi: 10.1016/j.soilbio.2009.09.010

    CrossRef Google Scholar Pub Med

    [8] MEYER S, GLASER B, QUICKER P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review[J]. Environmental Science & Technology, 2011, 45(22): 9473-9483.

    Google Scholar Pub Med

    [9] 蒋文忠. 炭素工艺学[M]. 北京: 冶金工业出版社, 2009.

    Google Scholar Pub Med

    [10] 刘亦陶, 魏佳, 李军. 废弃生物质水热炭化技术及其产物在废水处理中的应用进展[J]. 化学与生物工程, 2019, 36(1): 1-10.

    Google Scholar Pub Med

    [11] 吴倩芳, 张付申. 水热炭化废弃生物质的研究进展[J]. 环境污染与防治, 2012, 34(7): 70-75.

    Google Scholar Pub Med

    [12] MALGHANI S, JÜSCHKE E, BAUMERT J, et al. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study[J]. Biology and Fertility of Soils, 2015, 51(1): 123-134. doi: 10.1007/s00374-014-0980-1

    CrossRef Google Scholar Pub Med

    [13] ISLAM M N, PARK J. Immobilization and reduction of bioavailability of lead in shooting range soil through hydrothermal treatment[J]. Journal of Environmental Management, 2017, 191: 172-178.

    Google Scholar Pub Med

    [14] CHEN Y, JING Z, CAI K, et al. Hydrothermal conversion of Cs-polluted soil into pollucite for Cs immobilization[J]. Chemical Engineering Journal, 2018, 336: 503-509. doi: 10.1016/j.cej.2017.11.187

    CrossRef Google Scholar Pub Med

    [15] YANG F, ZHANG S, CHENG K, et al. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Science of the Total Environment, 2019, 686: 1140-1151. doi: 10.1016/j.scitotenv.2019.06.045

    CrossRef Google Scholar Pub Med

    [16] KANG C, KIM D, KHAN M A, et al. Pyrolytic remediation of crude oil-contaminated soil[J]. Science of the Total Environment, 2020, 713: 136498. doi: 10.1016/j.scitotenv.2020.136498

    CrossRef Google Scholar Pub Med

    [17] REN J, SONG X, DING D. Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment: Improved energy efficiency and soil reusability[J]. Chemosphere, 2020, 241: 124952.

    Google Scholar Pub Med

    [18] VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506.

    Google Scholar Pub Med

    [19] LUO H, WANG H, KONG L, et al. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 2019, 377: 341-348. doi: 10.1016/j.jhazmat.2019.05.092

    CrossRef Google Scholar Pub Med

    [20] LI D, XU W, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52(9): 5330-5338.

    Google Scholar Pub Med

    [21] LEE T, NAM I, KIM J, et al. The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery[J]. Journal of CO2 Utilization, 2018, 28: 367-373. doi: 10.1016/j.jcou.2018.10.017

    CrossRef Google Scholar Pub Med

    [22] MOCHIDA I, ANDO T, MAEDA K, et al. Catalytic carbonization of aromatic hydrocarbons: X: Cocarbonization of heterocyclic compounds with anthracene and 9, 10-dihydroanthracene catalyzed by aluminium chloride[J]. Carbon, 1980, 18(5): 319-328. doi: 10.1016/0008-6223(80)90003-2

    CrossRef Google Scholar Pub Med

    [23] MOCHIDA I, ANDO T, MAEDA K, et al. Catalytic carbonization of aromatic hydrocarbons: IX: Carbonization mechanism of heterocyclic sulfur compounds leading to the anisotropic coke[J]. Carbon, 1980, 18(2): 131-136. doi: 10.1016/0008-6223(80)90021-4

    CrossRef Google Scholar Pub Med

    [24] SASAKI T, JENKINS R G, ESER S, et al. Carbonization of anthracene and phenanthrene. I. Kinetics and mesophase development[J]. Energy & Fuels, 1993, 7(6): 1039-1046.

    Google Scholar Pub Med

    [25] KOPINKE F, REMMLER M. Reactions of hydrocarbons during thermodesorption from sediments[J]. Thermochimica Acta, 1995, 263: 123-139. doi: 10.1016/0040-6031(94)02419-O

    CrossRef Google Scholar Pub Med

    [26] REMMLER M, KOPINKE F. Thermal conversion of hydrocarbons on solid matrices[J]. Thermochimica Acta, 1995, 263: 113-121. doi: 10.1016/0040-6031(94)02420-S

    CrossRef Google Scholar Pub Med

    [27] HE L, SANG Y, YU W, et al. Polymerization and carbonization behaviors of 2-methylnaphthalene in contaminated soil during thermal desorption[J]. Water, Air, & Soil Pollution, 2020, 231(10): 1-10.

    Google Scholar Pub Med

    [28] VIDONISH J E, ALVAREZ P J, ZYGOURAKIS K. Pyrolytic remediation of oil-contaminated soils: Reaction mechanisms, soil changes, and implications for treated soil fertility[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3489-3500.

    Google Scholar Pub Med

    [29] 马军, 李水福, 胡守志, 等. 芳烃化合物组成及其在油气地球化学中的应用[J]. 地质科技情报, 2010, 29(6): 73-79. doi: 10.3969/j.issn.1000-7849.2010.06.012

    CrossRef Google Scholar Pub Med

    [30] TIAN Z, VILA J, WANG H, et al. Diversity and abundance of high-molecular-weight azaarenes in PAH-contaminated environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14047-14054.

    Google Scholar Pub Med

    [31] CHIBWE L, MANZANO C A, MUIR D, et al. Deposition and source identification of nitrogen heterocyclic polycyclic aromatic compounds in snow, sediment, and air samples from the Athabasca oil sands region[J]. Environmental Science & Technology, 2019, 53(6): 2981-2989.

    Google Scholar Pub Med

    [32] IDOWU O, SEMPLE K T, RAMADASS K, et al. Analysis of polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives in soils of an industrial heritage city of Australia[J]. Science of the Total Environment, 2020, 699: 134303. doi: 10.1016/j.scitotenv.2019.134303

    CrossRef Google Scholar Pub Med

    [33] 仝配配, 王子军. 石油加工过程中焦炭形成的原因、类型及影响因素[J]. 化工进展, 2016, 35(S1): 101-108.

    Google Scholar Pub Med

    [34] GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1): 83-96.

    Google Scholar Pub Med

    [35] SASAKI T, JENKINS R G, ESER S, et al. Carbonization of anthracene and phenanthrene. 2. Spectroscopy and mechanisms[J]. Energy & Fuels, 1993, 7(6): 1047-1053.

    Google Scholar Pub Med

    [36] CHEN K Y, LIU J C, CHIANG P N, et al. Chromate removal as influenced by the structural changes of soil components upon carbonization at different temperatures[J]. Environmental Pollution, 2012, 162: 151-158. doi: 10.1016/j.envpol.2011.10.036

    CrossRef Google Scholar Pub Med

    [37] LIU Y, ZHANG Q, WU B, et al. Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons[J]. Journal of Hazardous Materials, 2020, 383: 121165. doi: 10.1016/j.jhazmat.2019.121165

    CrossRef Google Scholar Pub Med

    [38] CHEN L, ZHANG Q, YANG X, et al. Research progress of biochar in soil restoration of lead and cadmium composite contaminated soil[J]. Hans Journal of Soil Science, 2018, 6(4): 108-114.

    Google Scholar Pub Med

    [39] PRAYOGO C, JONES J E, BAEYENS J, et al. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure[J]. Biology and Fertility of Soils, 2014, 50(4): 695-702. doi: 10.1007/s00374-013-0884-5

    CrossRef Google Scholar Pub Med

    [40] 王典, 张祥, 姜存仓, 等. 生物质炭改良土壤及对作物效应的研究进展[J]. 中国生态农业学报, 2012, 20(8): 963-967.

    Google Scholar Pub Med

    [41] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4): 779-785.

    Google Scholar Pub Med

    [42] EVANGELOU M W H, BREM A, UGOLINI F, et al. Soil application of biochar produced from biomass grown on trace element contaminated land[J]. Journal of Environmental Management, 2014, 146: 100-106.

    Google Scholar Pub Med

    [43] KINNEY T J, MASIELLO C A, DUGAN B, et al. Hydrologic properties of biochars produced at different temperatures[J]. Biomass and Bioenergy, 2012, 41: 34-43. doi: 10.1016/j.biombioe.2012.01.033

    CrossRef Google Scholar Pub Med

    [44] LAIRD D A, FLEMING P, DAVIS D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3): 443-449.

    Google Scholar Pub Med

    [45] 勾芒芒, 屈忠义. 土壤中施用生物炭对番茄根系特征及产量的影响[J]. 生态环境学报, 2013, 22(8): 1348-1352.

    Google Scholar Pub Med

    [46] 王成己, 王义祥, 刘岑薇, 等. 不同材料生物质炭施用对果园土壤性状及活性有机碳的影响[J]. 福建农业科技, 2019(3): 66-70.

    Google Scholar Pub Med

    [47] GASKIN J W, SPEIR A, MORRIS L M, et al. Potential for pyrolysis char to affect soil moisture and nutrient status of a loamy sand soil, 2007[C]//2007 Georgia Water Resources Conference. Proceedings of the 2007 Georgia Water Resources Conference. University of Georgia, 2007: 1-3.

    Google Scholar Pub Med

    [48] NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. doi: 10.1097/SS.0b013e3181981d9a

    CrossRef Google Scholar Pub Med

    [49] 孙雪, 刘琪琪, 郭虎, 等. 猪粪生物质炭对土壤肥效及小白菜生长的影响[J]. 农业环境科学学报, 2016, 35(9): 1756-1763.

    Google Scholar Pub Med

    [50] GRONWALD M, DON A, TIEMEYER B, et al. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils[J]. Soil, 2015, 1(1): 475-489. doi: 10.5194/soil-1-475-2015

    CrossRef Google Scholar Pub Med

    [51] 郑子乔, 祝经伦. 生物质炭对小麦根区土壤养分和微生物特征的影响[J]. 水土保持研究, 2019, 26(3): 35-41.

    Google Scholar Pub Med

    [52] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x

    CrossRef Google Scholar Pub Med

    [53] 王成己, 陈庆荣, 陈曦, 等. 烟秆生物质炭对烟草根际土壤养分及细菌群落的影响[J]. 中国烟草科学, 2017, 38(1): 42-47.

    Google Scholar Pub Med

    [54] ANDERSON C R, CONDRON L M, CLOUGH T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5/6): 309-320.

    Google Scholar Pub Med

    [55] CHEN J, LIU X, ZHENG J, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. doi: 10.1016/j.apsoil.2013.05.003

    CrossRef Google Scholar Pub Med

    [56] STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009, 41(6): 1301-1310. doi: 10.1016/j.soilbio.2009.03.016

    CrossRef Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  /  Tables(2)

Article Metrics

Article views(6790) PDF downloads(166) Cited by(0)

Access History

Charring behaviors and their influence of organic contaminated soil during thermal treatment

Abstract: Thermal treatment technologies occupy a high domestic/foreign market share, and have become the main remediation technology of organic contaminated sites. Though many studies and concerns are focused on the process, parameters, energy, effect, cost and application of thermal treatment, there are few literature reports on the charring behaviors in the thermochemical conversion of organic pollutants. The charring behaviors may improve reusability of soil and affect process parameters of thermal treatment. Four types of charring reactions and their mechanisms are shown in this paper, and the charring behaviors of petroleum hydrocarbons and aromatic compounds during thermal treatment are reviewed. The effects of organic pollutants charring on soil reusability is summarized, and the improvement of biochar to soil fertility is analysed. Based on the mentioned above, several important research topics of charring process during thermal treatment of organic contaminated soil are proposed.

  • 热处理技术常用于去除石油烃 (total petroleum hydrocarbons, TPH)、多环芳烃 (polycyclic aromatic hydrocarbons, PAHs)[1]、多氯联苯(polychlorinated biphenyls, PCBs)[2]、氯苯(chlorobenzene, CBz)[3]等土壤有机污染物。热处理技术类型的选择与污染物性质及其沸点密切相关,不同类型技术有不同的特征和适用场合(见图1)。热处理温度的高低会影响污染物的去除机制:低温热处理时,污染物主要以气相脱附(物理挥发)的形式去除;高温热处理时,污染物则以缩合转化(炭化)、氧化(燃烧)等热反应形式转移[4]。土壤热处理技术快速、高效、彻底、可控,但是有学者担忧会改变土壤结构和性质[5],破坏有机质[6]和微生物菌群[7],从而可能影响再利用特性。关于热处理中有机污染物的化学转化,特别是炭化行为,文献报道并不多见。本文将探讨、分析热处理过程中的炭化行为、炭化机理及其对土壤再利用特性的影响,以期为土壤热处理技术的科学研究与工程实践提供参考。

    • 传统焦化行业的炭化反应主要包括热解炭化(pyrolysis)、水热炭化(gasification)、气化炭化(hydrothermal carbonization)和闪蒸炭化(flash carbonization)4类[8],其机理、原料及反应条件各不相同(见图2)。

      1)热解炭化。热解炭化的温度范围为200~3 000 ℃,其反应过程分为传统炭化I(环化及芳构化)、传统炭化II(固相聚集及芳香族平面的成长)和石墨化炭化III(三度结构增加及晶体成长)3个阶段[9],如图3所示。热解炭化以反应时间分为慢速热解和快速热解;以加热方法分为燃料燃烧、电加热和微波热解[8];以炭化所处相态分为气相炭化、液相炭化和固相炭化[9]。土壤高温热处理过程中发生的有机污染物炭化行为主要属于热解炭化的第一阶段——传统炭化I。

      2)水热炭化。水热炭化是以水为介质,将原料置于密闭的水热反应釜中,于150~350 ℃停留1 h以上,最终转化为水热炭,是一种脱水脱羧的加速煤化过程[10]。水热炭化反应经历了水解、脱水、脱羧、芳香化、缩聚等步骤[11],其低温环境导致产生的气体产量非常低,大部分原料转为棕色的煤或溶解在液体中[12]。水热技术可作为重金属(如铅、铯等)污染土壤的一种可靠修复方法[13-14],还可将生物质转化为黄腐酸和腐殖酸,从而用于土壤修复[15]

      3)气化炭化。在气化炭化过程中,在大气压或高压下,生物质在温度为800 ℃左右的气化室被部分氧化。该过程的主要产品是气体,仅形成少量焦炭和液体(炭化的结果)。气化炭化与热解炭化的主要区别在于前者转化环境需要部分氧气,而后者几乎没有氧气[8]

      4)闪蒸炭化。在压力为1~2 MPa下,从原料填充床的底部点火,火势通过炭化床向上流动,阻挡工艺中向下流动的空气。燃烧每千克原料总共约有0.8~1.5 kg空气被输送至反应器中。该方法的反应时间低于30 min,反应器中温度为300~600 ℃,主要生成气态和固态产物[8]

      综上所述,经过上述4种炭化反应制备的生物炭,均可作为土壤改良剂应用于土壤强化修复。4种炭化反应中,热解炭化是有机污染土壤热处理过程中最可能发生的炭化行为。水热炭化能将有机污染物转化为土壤中的腐殖酸类物质,其温和的反应条件或许能为高水分污染土壤的处理、土壤性质的保持和降低二次污染物的排放提供新的修复思路。闪蒸炭化的反应温度处于大部分有机污染物挥发或热转化温度区间,并且其固相产物多,具有较大改善土壤性能的潜力。因此,在污染土壤热处理中可能发生热解、水热及闪蒸炭化。4种炭化在污染土壤修复方面都有辅助意义,但水热及闪蒸炭化在土壤热处理过程中发生的可能性还应进一步展开理论研究和实验验证。

    2.   土壤热处理过程中有机污染物的炭化行为
    • 土壤热处理过程中有机污染物的炭化过程、炭化反应、炭化机理等相关研究,已有少量文献报道,涉及的污染物类型主要为石油烃和芳烃化合物[16-27](见表1)。

    • 热解修复[16-18]和低温微波辅助修复[19]石油烃污染土壤均会发生聚合反应生成热解炭,前者修复石油烃污染物的炭化反应主要发生于400~500 ℃[28],后者主要发生在200 ℃以上[19]。热解炭的形成标志着土壤中有机污染物转变为稳定且无害的炭。此外,热处理过程中石油主要成分(饱和烃、芳香烃、胶质和沥青质)通过蒸发、裂解和聚合/炭化3种方式发生不同程度的转化。其中,饱和烃以气体或热解油形式转化,芳香烃聚合成更大的结构即热解油或少部分残炭,胶质和沥青质可能发生裂解、聚合(主要作用)及裂解-聚合反应形成大部分残炭[20]。另外,氧的存在会影响热解产物的分配比及性能,燃料油污染土壤在N2和CO2这2种热处理环境下,热解气、热解油和热解炭的总质量平衡比分别为60∶33.4∶5.6和70.2∶25.3∶4.6。氧化环境会使得炭从热解油向热解气转移,并改变所有热解产物的表面形貌[21]

      据上述文献分析可看出,对石油烃污染物炭化行为及其影响的关注较少。首先,石油烃的炭化反应与热处理方式、化合物组成和反应气氛有关,但其影响机制尚未完全明晰,缺少因果分析层面的足够理论支撑;其次,目前尚未定量石油烃的炭化产率和推测污染物的炭化路径;另外,应关注热处理过程中不同反应气氛的热解炭性能差异以及不同比例混合气氛的炭化情况,以获取修复石油烃污染土壤的最佳反应条件。

    • 芳烃化合物是烃源岩、原油、煤及现代沉积物中含量仅次于饱和烃的重要有机族组分,分为常规多环芳烃、N/O/S杂环芳烃、芳香甾萜烷和脱羟基维生素E 4个系列[29]。近年来,N、O、S等杂环芳烃造成的土壤环境污染越来越受到环境治理者的关注[30-31]。从污染场地数据库获得的结果表明,杂环芳烃可能占土壤中多环芳烃总量的10%~20%[32]。因此,深化杂环芳烃基础理论研究,特别是热处理过程中的炭化行为研究,对于杂环芳烃污染土壤修复及可持续应用具有重要意义。

      杂环芳烃经裂解、缩合等反应能生成焦炭,杂环芳烃的生焦趋势要显著大于其他烃类物质(烷烃、烯烃和多环芳烃等),其反应活性顺序为芴>咔唑>二苯并呋喃>苯噻吩>其他烃类[33]。芳烃聚合和分子重排是控制衍生炭结构的关键步骤,其反应的相对程度跟反应物起始结构有关,并且催化剂(促进氢转移和脱氢反应)可改变反应历程及产物性能[34],如在AlCl3催化作用下,吖啶和蒽及9,10-二氢蒽共炭化可以改善焦炭光学各向异性的发展[22]。此外,不同化合物在中间阶段的发展和炭化速率与杂原子的脱除程度和速率[23]及炭化过程中的动力学有关[24, 35]。另外,在300 ℃下,河流沉积物中PAHs会发生炭化反应转化为非挥发性产物[25],矿物基质对该反应有促进作用[26]。关于土壤中芳烃化合物的炭化研究较少,此前,本课题组开展了PAHs的聚合及炭化行为研究,分析了PAHs在气相和土壤中的热转化反应,结果显示气相中PAHs发生了去甲基、缩合及裂解反应,产生了高分子化合物,土壤表面覆盖了一层“炭膜”[27],从而证实了土壤中芳烃化合物炭化反应的发生。

      芳烃化合物的炭化研究侧重于分析炭化中间过程,但炭化产率及其产物的理化特性不仅取决于中间相的发展方向,也与反应基质、反应条件及热处理技术等有关。因此,已有研究难以指导芳烃污染土壤的炭化行为影响分析。

    3.   炭化产物对土壤再利用特性的促进作用
    • 生物质的炭化产物生物炭是一种土壤改良剂,对于改善土壤的理化性质和生物学特性,增加土壤肥力,提高作物产量都具有重要作用。然而,土壤有机物炭化产物对土壤再利用特性的影响研究还较少,在后续深入研究中可借鉴生物炭改良污染土壤的相关研究成果。

    • 土壤热处理过程中,有机污染物在土壤表面生成的炭化产物能促进土壤再利用特性[18],可为修复有机污染土壤提供一种创新与战略手段[21]。目前,相关的研究主要集中在改善土壤理化性质和促进植物生长方面。CHEN等[36]研究了炭化土壤去除Cr(VI)的能力,结果表明反应温度200 ℃时土壤炭化形成的有机碳以及反应温度大于400 ℃时形成的芳族碳,均是还原Cr(VI)的主要因素。VIDONISH等[28]研究了快速高温热解(<500 ℃)后的炭化土壤理化特性,发现其pH维持在正常范围,对植物生长没有任何不良影响。此外,炭化土壤的孔隙率、持水能力和渗透性等都得到了提高,且植物生产量也高于污染土壤[16-17, 37]。以上研究证实了热处置土壤的炭化产物会影响土壤生态价值,但尚缺乏针对有机污染物炭化产物对土壤再利用特性的微观影响机制的研究,如炭化产物对热处理后土壤微生物群落的再繁殖(recolonization)及作物有效营养元素的影响机制等。

    • 生物炭是生物质在厌氧或绝氧条件下,生物质经高温(240~700 ℃)裂解炭化而形成的一类高度芳香难熔性固态物质,具有良好的结构、巨大的比表面积和吸附力[38]以及高度的稳定性和抗微生物腐蚀能力[39];并且,其表面存在大量—OH,—COOH等含氧官能团,能增加土壤阳离子交换量(cation exchange capacity, CEC)[40],提高土壤对Ca2+、K+、Mg2+NH+4等养分离子的吸持能力[41];还能锁定植物产生的CO2并改善低肥力土壤的质量[42]。因此,生物炭常用作土壤改良剂,其对土壤持水量、营养成分、pH和微生物菌落都有明显促进作用。

      1)提高土壤持水量。添加生物炭会增加土壤孔隙度,进而增加有效水含量、改善土壤持水能力[43]。与未改良土壤相比,生物炭改良土壤保留了更多水分(高达15%)[44]。随着生物炭施入量的增加,土壤毛管持水量增大,平均增加1.46倍[45]。不同材质生物炭保水能力不同,随着生物炭含量增加,施用小麦秸秆炭土壤含水量增幅最大(平均增幅28.74%),茶树枝条炭增幅最小(7.16%),不同生物炭改性土壤含水量提高范围为1.05%~55.77%[46]

      2)增加土壤营养成分。施用生物炭可增加土壤保持养分的能力和利用率,进而促进植物生长[47]。与未改良土壤相比,生物炭改良土壤有更高的CEC、比表面积、总氮[44]、有效Ca/K/P、有机碳[48]和植物生长产量[49]。炭化产物的养分保留潜力与炭化方式有关,热解炭吸附硝酸盐、铵盐和磷酸盐等养分的能力比水热炭强[50]。此外,不同含量生物炭对土壤养分的影响程度也不同。小麦根区土壤有机碳、全氮、全磷和全钾含量随生物质炭浓度(10~40 t·hm−2)的增加呈先增加后减少趋势,但均显著高于对照。其中,在20 t·hm−2生物炭浓度处理下,小麦根区土壤的有机碳、全氮和全钾达到最大[51]

      3)稳定土壤pH。我国南方地区存在大面积酸性土壤,一是由于养分有效性降低,二是由于铝离子等有毒物质毒性更强、使作物根系中毒或死亡。生物炭具有碱性,能提高酸性土壤的pH并降低土壤Al含量[48]。不同材料生物炭对土壤pH的影响幅度不同。与非豆科植物相比,豆科植物产生的生物炭对土壤pH影响更大[52],施用茶树枝条炭土壤pH增幅最大(平均增幅1.21个单位),小麦秸秆炭增幅最小(平均增幅0.41个单位)[46]。但生物炭的添加有时也能造成土壤pH降低。小麦根区土壤pH随生物含量的增加呈逐渐降低趋势,不同含量生物质炭处理下的小麦根区土壤pH均明显低于对照值[51]。这可能与原土壤理化性质和生物炭种类有关。

      4)丰富土壤微生物群落。添加生物炭改良剂会影响土壤微生物数量和群落组成[39],不同生物炭对土壤生物丰度的影响有所差别。烟杆生物炭改良土壤的微生物种类增加了26.4%[53],辐射松生物炭改良土壤细菌群落丰度的时空变化>5%,包括根瘤菌(8%)、菌丝菌(14%)、链霉菌(6%)、嗜热单孢菌(8%)、链霉菌科(11%)和小单孢菌科(7%)[54]。小麦秸秆生物炭使得基因拷贝数的真菌和细菌比率降低,土壤有机碳和pH提高的同时抑制了真菌生长,土壤中菌类向着以细菌为主的微生物群落转变[55]。酵母和葡萄糖生物炭分别提高了农地和森林土壤的真菌丰度和革兰氏阴性菌丰度[56]。总之,生物炭能明显增加土壤微生物总数,其影响机制与土壤类型、土壤肥力、植物种类和生态环境等密切相关[51]

      因此,进行土壤改良时,应当考虑污染物类型、土质类型和目标改良特性等多种因素,选择合适的生物炭。生物炭对土壤性能的改良效果,汇总于表2

    4.   展望
    • 生物炭、焦炭等焦化行业的炭化过程为人熟知,但是环保行业对有机污染土壤热处理过程的炭化过程关注不多,有机污染物炭化行为和机制尚不明晰,今后可重点从以下几个方面开展深入研究。

      1)借鉴生物炭、焦炭等焦化行业的炭化成果及研究手段,加强土壤热处理过程炭化产物的多角度表征,评价炭化产物的二次污染特性,解析土壤中有机污染物的炭化行为机制。

      2)探明有机土壤热处理炭化产物对土壤再利用特性的改善机制,甄别不同于生物质炭的有机污染物衍生炭影响特性,比如土壤养分、肥力、微生物、生态恢复功能等。

      3)明确热处理工艺参数对土壤炭化产物的影响特性,从污染土壤修复效率与土壤再利用特性等角度综合考虑,选择面向目标需求的综合最优热脱附参数,以保持高效修复的同时,提升热处理技术的“绿色可持续修复”特性。

      4)关注土壤热处理过程中其它炭化类型,探究水热炭化和闪蒸炭化对特征污染土壤热处理过程的贡献,揭示气化炭化和闪蒸炭化后的生物炭对土壤肥力的影响机制,明确多种炭化类型在不同场地特征热处理过程中发生的可能性。

      5)在满足土壤修复目标前提下,探讨土壤有机物炭化行为对热处理耦合方案的影响特性,比如热-生物耦合,以及不同热处理耦合方案对土壤有机物炭化行为的影响机制。

    Figure (3)  Table (2) Reference (56)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint