Processing math: 100%

YUAN Xincheng, SHI Yonghai, XU Jiabo, LIU Yongshi, DENG Pingping. Purification efficiency of Takifugu obscurus aquaculture tail water by combination of photosynthetic bacteria and aquatic plants[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1311-1320. doi: 10.12030/j.cjee.202009150
Citation: YUAN Xincheng, SHI Yonghai, XU Jiabo, LIU Yongshi, DENG Pingping. Purification efficiency of Takifugu obscurus aquaculture tail water by combination of photosynthetic bacteria and aquatic plants[J]. Chinese Journal of Environmental Engineering, 2021, 15(4): 1311-1320. doi: 10.12030/j.cjee.202009150

Purification efficiency of Takifugu obscurus aquaculture tail water by combination of photosynthetic bacteria and aquatic plants

  • Corresponding author: SHI Yonghai, yonghais@163.com
  • Received Date: 21/09/2020
    Available Online: 10/04/2021
  • In order to achieve the high efficient purification of freshwater aquaculture tail water, the purification efficiency of Takifugu obscurus aquaculture tail water by photosynthetic bacteria combined with one of three different life forms of aquatic plants Eichhornia crassipes, Ipomoea aquatica and Myriophyllum verticillatum was studied through laboratory water quality determination methods, the changes and removal effects of various parameters of water quality (TAN, NO2-N, NO3-N, TSS, COD, TN and TP) were analyzed. The results showed that Ipomoea aquatica grew fastest of three aquatic plants, Eichhornia crassipes followed, and Myriophyllum verticillatum grew slowest. The combined systems of photosynthetic bacteria and aquatic plants had a significant purification effect on the freshwater aquaculture tail water, the removal effects of NO2-N, NO3-N, TSS, TN and TP in tail water by the combined systems with aquatic plants(PA1, PA2, PA3) were better than those of photosynthetic bacteria group (P) and control group (P<0.05), but the removal effects of TAN and COD were not significant (P>0.05), but they were higher than those of control group. Among them, the removal effect of the combined system with Ipomoea aquatica (PA2) was the best, and the concentrations of NO2-N, TN, TP and COD decreased rapidly within 6 days, the concentration of TAN decreased to the lowest value within 9 days, and gradually approached to the stable values. The final removal rates of TAN, NO2-N, NO3-N and TSS reached 94.34%, 99.7%, 99.11% and 97.23%, respectively, and the removal rates of TN, TP and COD reached 87.74%, 86.26% and 34.07%, respectively. All the indicators, except for TSS, could meet the first-level discharge standards in the Discharge Requirements for Tail Water of Freshwater Aquaculture (SC/T 9101-2018) required by the Ministry of Agriculture and Rural Areas of China. Therefore, the best combination was photosynthetic bacteria and Ipomoea aquatica. The research results can provide a reference for the design and construction of freshwater aquaculture tail water treatment system.
  • 海上油气田在钻井作业过程中会产生大量钻井废物,这些废物因沾染钻井液成分或接触地层等原因而含有烃类、盐类、各类聚合物等污染物,故其成分复杂、有机物含量高,部分物质还具有生物毒性。在较长一段时期内,通常直接将钻井废物排入海洋[1-2],而使其成为了重要的污染源,如钻井废物中油类物质易在海面形成油膜,破坏海洋生态环境;含有钻井添加剂的钻屑沉积海底,可能毒害海洋生物,进而影响海洋生态系统及人群健康。随着环保要求日趋严格,越来越多地区已经禁止将钻井废物直接排海,“零排放”已成为大势所趋[3-4]。因此,将钻井废物运送回陆上处置几乎已成为部分区域水基钻井废物唯一可行的处置途径。但由于目前缺乏针对海上钻井废物的处理工艺,致使海上钻井废物回收上岸后造成堆积。以我国最大的海上油气田渤海油气田为例,截至2019年8月19日,渤海油气田海域水基钻井废物回收上岸后的累计堆放量已高达超过10×104 t,导致港口积压拖轮30多条,部分作业点停工或者推迟。钻井废物的末端处置问题已经影响到了前端的钻井勘探开发效率和作业计划。如何高效率解决海上水基钻井废物回收上岸后的后续处置问题,已成为海洋油气田开发要解决的重课题之一。

    鉴于钻井废物具有和部分建筑材料制备原料相似的成分,许多研究者对陆上油气田水基钻井废物回收制备建筑材料开展了相关研究,形成多种资源化工艺并推广应用。例如,以陆上水基钻井废物为原料制备烧结砖[5-6]、陶粒[7]、水泥、免烧砖[8-9]和混凝土等[10]。其中,烧结工艺是目前我国陆上油气田的主流处置工艺,被认为“环境可行”并实现了大范围工业应用。烧结工艺是指在高温下(通常是900 ℃以上)加热固体废物,诱导相邻颗粒的粘结或焊接,从而形成密实度更好的产品,该工艺在降低烧结制品孔隙率的同时提高了制品的其它相关工程性能。此外,烧结工艺还可以通过高温实现有机污染物的完全去除[11],并将重金属固结于以惰性硅酸盐为主的基体材料中以保证制品的环境安全性[12]。然而,海上水基钻井废物的成分与陆上有所差异,其高含盐特性决定了陆上现有处理工艺及技术无法实现完全复制。目前,国内专门针对海上水基钻井废物资源化利用的研究尚在探索阶段。

    本研究在对海上水基钻井废物的基本性能进行综合分析的基础上,以海上水基钻屑为主要原料,开展海上水基钻屑制备烧结砖工艺研究,以明确烧结砖性能的影响因素并探讨性能调控方法,进而确定最优制备工艺及相关工艺参数;此外,通过掌握重晶石对烧结砖性能的影响,并结合微观表征(矿物组成和微观形貌),对烧结机理进行深入探讨。本研究可为海上水基钻屑综合利用提供技术参考。

    海上水基钻屑取自渤海油气田某钻井平台,含水率约为16%,呈灰色渣状;陆上水基钻屑取自川南某页岩气井,呈灰色渣状;页岩取自四川某矿山,经磨细预处理后呈褐色颗粒状;煤炭取自四川某砖厂。采用的药品及试剂为浓硫酸(H2SO4)、浓硝酸(HNO4)、硫酸钡(BaSO4),均为分析纯。

    参照原料配比表(表1),将磨细预处理的海上水基钻屑、页岩和煤炭准确称量,在干基状态将原料混合均匀;然后在搅拌机中加入14%(质量分数)的自来水,搅拌均匀后于室温困料陈化4 h,以增强混合料可塑性,提高砖坯表面平滑度;将陈化好的物料装入模具时,采用压力试验机将物料在三联金属模具(40 mm×40 mm×160 mm)中压制成型,再将成型砖坯放入电热恒温干燥箱中,在(100±5)℃条件下干燥一定时间以去除砖坯水分;将干燥好的砖坯放入高温马弗炉中以5 ℃·min−1升温速率至最高烧结温度(900、950、1 000 ℃)后保温3 h,使原料之间充分反应,最后自然冷却至室温。其工艺流程图如图1所示。

    表 1  烧结砖原料配比
    Table 1.  Raw material proportion of sintered brick
    配方代号
    各组分质量分数/%含水率/%
    页岩水基钻屑煤炭
    W-18510514
    W-27520514
    W-36530514
    W-45540514
    W-54550514
     | Show Table
    DownLoad: CSV
    图 1  烧结砖制备工艺流程图
    Figure 1.  Process flow chart of sintered brick preparation

    1)采用X射线荧光光谱仪(XRF,XRF-1800,日本岛津)对原料的化学成分进行分析。

    2)采用《固体废物 浸出毒性浸出方法 硫酸硝酸法》(HJ/T 299-2007)[13] 制备海上和陆上水基钻屑毒性浸出液,测定浸出液中的重金属浓度,并与《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[14]进行对比。

    3)采用《固体废物浸出毒性浸出方法-水平振荡法》(HJ 557-2010)[15]制备海上和陆上水基钻屑浸出液,测定浸出液中的污染物浓度并与《污水综合排放标准》(GB 8978-1996)[16]进行对比。

    4)参照标准《砌墙砖试验方法》(GB/T 2542-2012)[17],测试烧结砖的物理力学性能(烧结收缩率、体积密度、抗压强度和吸水率),并与《烧结普通砖》(GB/T 5101-2017)[18]进行对比,以评估烧结砖的建材性能。

    5)采用X射线衍射仪(XRD,X Pert PRO MPD,荷兰帕纳科公司)对烧结砖的矿物组成进行表征。

    6)采用扫描电子显微镜(SEM,ZEISS EV0 MA15,德国卡尔蔡司)对烧结砖的微观形貌进行分析。

    1)化学组成分析。海上水基钻屑、陆上水基钻屑和页岩的化学组成的对比如表2所示。海上水基钻屑与陆上水基钻屑的主要化学成分相似,均以SiO2、Al2O3和Fe2O3为主,同时含有部分CaO、Na2O、K2O、MgO等。由于陆上水基钻屑中的硅质量分数较低(29.24%),钙质量分数较高(19.30%),这可能是导致目前陆上水基钻屑在烧结砖中掺量比较低(低于10%)的主要原因之一。而海上水基钻屑中硅质量分数较高(53.42%),同时主要化学成分均在烧结砖适宜范围内(Al2O3为2.00%~10.00%、Fe2O3为2.00%~10.00%、CaO为0~10.00%)。因此,从化学组成来看,其具备制备烧结砖可行性。

    表 2  水基钻屑和页岩的化学成分
    Table 2.  Chemical compositions of water-based drill cuttings and shale %(质量分数)
    供试原料SiO2Al2O3Fe2O3CaONa2OK2OMgOBaOSO3ClLOI
    海上水基钻屑53.4215.337.894.724.153.332.221.880.942.4522.10
    陆上水基钻屑29.9410.105.3219.300.271.021.5412.406.9015.60
    页岩61.0017.906.305.401.403.403.200.146.80
      注:—意为未检出。
     | Show Table
    DownLoad: CSV

    2)浸出毒性分析。由表3可知,陆上水基钻屑和海上水基钻屑重金属浸出毒性均远低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)[14]中的危险废物限值。由表4可知,海上水基钻屑和陆上水基钻屑水浸出液中的部分指标(TOC、石油类)均不能完全达到《污水综合排放标准》(GB 8978-1996)[16]一级标准限值,在未妥善管理的情况下可能对环境造成二次污染。因此,海上水基钻屑与陆上水基钻屑均可归类为一般Ⅱ类工业固体废物而非危险废物,可直接进行资源化利用。

    表 3  水基钻屑重金属浸出质量浓度
    Table 3.  Mass concentrations of heavy metals in water-based drill cuttings leachate mg·L−1
    供试原料或相关标准总铬
    海上水基钻屑0.003*0.006*0.0020.004*0.002*0.001*0.1790.0040.003*0.010
    陆上水基钻屑0.0110.0450.0040.004*0.0040.0040.1500.0070.003*0.010
    《危险废物鉴别标准 浸出毒性鉴别》
    (GB 5085.3-2007)
    100.000100.0001.0005.00015.0000.020100.0005.0005.0005.000
      注:*意为低于检出限。
     | Show Table
    DownLoad: CSV
    表 4  水基钻屑浸出液污染物质量浓度
    Table 4.  Mass concentrations of the contaminants in water-based drill cuttings leachate mg·L−1
    供试原料或相关标准TOCCODCl总汞总镉
    海上水基钻屑73.500568.0002.86×1030.0010.005
    陆上水基钻屑50.400146.6000.0000.004
    《污水综合排放标准》
    GB 8978-1996
    20.000100.0000.0500.100
      注:—意为未检出。
     | Show Table
    DownLoad: CSV

    3)热分析。为制定合理的烧成制度并探明海上水基钻屑在烧成过程中发生的物理化学变化,对水基钻屑进行了热分析,结果如图2所示。海上水基钻屑在加热过程中,整体呈逐渐失重趋势。200 ℃以下的失重,主要是样品中排除自由水引起的;200~600 ℃的失重主要是由于有机组分去除引起;600~800 ℃的明显失重主要是由于方解石和高岭石等矿物分解或一些低沸点物质挥发导致;800 ℃以上,钠长石不断熔融使得熔融液相提前出现,促使固相反应进行,形成新的结晶态物质。值得注意的是,当烧结温度高于900 ℃时,原料重量还在持续降低,初步推测,这可能是由于无机氯盐在高温段挥发或与其他物质反应而被释放出去所导致。结合目前传统烧结砖烧制温度(约900~1 100 ℃),本研究初步选定烧结温度分别为900、950和1 000 ℃。

    图 2  海上水基钻屑热分析图
    Figure 2.  Thermal analysis of offshore water-based drill cuttings

    1)水基钻屑掺入量和烧结温度对烧结砖的烧结收缩率和体积密度的影响。烧结体积收缩率是指烧结砖试样烧结后的体积变化。干燥的成型坯体经高温烧结后,部分矿物组分分解和挥发物质去除,加之熔融玻璃相的粘结,会使砖体发生收缩。通常而言,烧结收缩率要求不超过8.0%[19],较高收缩率易导致烧结砖发生明显变形,从而降低砖体性能。实验结果如图3所示。由图3(a)可知,在相同烧结温度下,烧结收缩率随着水基钻屑掺入量增加而增加。这可能是因为,海上水基钻屑的LOI值较高(约22%),有机物以及高温易分解矿物或其它挥发性物质较多,因此,烧结过程中会使砖体内部产生更多孔隙,从而增大质量损失和孔隙率,最终在熔融玻璃相的粘结效应下导致砖体内部颗粒组分聚集进而产生收缩。在相同原料配比下,随着烧结温度的提高,烧结砖的烧结收缩逐渐增加。当烧结温度为1 000 ℃、水基钻屑掺入量为50%时,烧结收缩率最高金可达5.6%。不同烧结温度(900、950、1 000 ℃)下所有配比的烧结砖收缩率均小于8%,因此,烧结砖的外观均未发生明显变形收缩。由图3(b)可知,在相同烧结温度下,烧结砖的体积密度随着水基钻屑的掺入量增加而降低。这可能是因为海上水基钻屑中包含较多化学结晶水、有机成分和矿物组分(碳酸盐、高岭土等),故其LOI值远高于页岩(6.8%),因此,水基钻屑掺入量增加会增加砖坯在烧结过程中的质量损失。

    图 3  不同水基钻屑掺入量和烧结温度对烧结收缩率和体积密度的影响
    Figure 3.  Effects of different water-based drill cuttings content and sintering temperature on the sintering shrinkage rate and bulk density

    2)水基钻屑掺入量和烧结温度对烧结性的抗压强度和吸水率的影响。抗压强度作为评估建筑材料质量最重要的性能参数,直接决定着建筑材料的应用性。吸水率是衡量烧结砖耐久性能的一个重要因素。根据国家标准《烧结普通砖标准》(GB 5101-2017)[18]的要求,烧结普通砖的抗压强度最小不能低于10 MPa,吸水率则要求低于18%。由图4(a)可知,在相同烧结温度下,随着水基钻屑掺入量增大,抗压强度逐渐降低。这可能是因为,增加钻屑掺入量降低了泥料颗粒之间的结合性,此外,烧失量在烧结过程中致使产生了更多孔隙,造成砖体出现应力集中效应,极大降低了烧结砖体性能。由图4(b)可知,在相同烧结温度下,随着水基钻屑掺入量增大,吸水率则逐渐增大。当熔融玻璃相不足以填充内部孔隙时,将会降低抗压强度,增加烧结砖吸水率。在同一原料配比下,通过对比900、950、1 000 ℃温度下的烧结砖性能,发现随着烧结温度逐渐升高,烧结砖的性能有一定改善(抗压强度提高,吸水率降低)。这可能是因为,在保证砖体外观质量的前提下,适当提高烧结温度有助于促进熔融进而生成更多低共熔物和熔融玻璃相。本实验结果表明,海上水基钻屑掺入比增加对烧结砖性能呈负效应。当海上水基钻屑掺入量超过30%时,抗压强度低于10 MPa、吸水率高于18%,该砖体性能已不能满足《烧结普通砖》(GB 5101-2017)[18]的要求。

    图 4  不同水基钻屑掺入量和烧结温度对抗压强度和吸水率的影响
    Figure 4.  Effects of different water-based drill cuttings content and sintering temperature on compressive strength and water absorption

    综上所述,在海上水基钻屑∶页岩∶煤炭=30∶65∶5、成型水分14%、陈化时间4 h、成型压力20 MPa、(100 ± 5) ℃下干燥8 h、升温速率5 ℃·min−1、烧成温度1 000 ℃、保温时间3 h的条件下,制得的水基钻屑烧结砖的性能良好,能够满足《烧结普通砖》(GB/T 5101-2017)[18]中MU15的要求。

    为了解海上水基钻屑在烧结过程中的物相变化以及微观形貌,探明烧结砖强度来源,对烧结砖样品进行了XRD和SEM分析并深入探讨其烧结机理。

    1) XRD。图5为不同水基钻屑掺入量和烧结温度下烧结砖的XRD图。在不同水基钻屑掺入量(图5(a))和不同烧结温度(图5(b))条件下,烧结砖的主要矿物相均为石英(SiO2)、钠长石(NaAlSi3O8)、赤铁矿(Fe2O3)、钙长石(CaAl2Si2O8)和重晶石(BaSO4)。这些矿物组分形成了烧结砖的骨架结构,有助于提高其力学性能[20]。由图5(a)可知,在相同烧结温度(1 000 ℃)下,随着水基钻屑掺入量增加,使得烧结砖性能降低的同时,石英特征峰强度逐渐增大,而钠长石峰值则逐渐降低。通过观察XRD结果可知,这可能是因为水基钻屑中虽然含有一定钠长石,但是含量较低,提高水基钻屑掺入量将降低混料中的长石含量。钠长石在烧结过程中可以与石英及其余硅铝酸盐矿物形成低共熔物,促进矿物分解熔融,增加样品内部的熔融玻璃相[21]。由图5(b)可知,随着烧结温度升高,钠长石特征峰强度逐渐增高,同时,石英特征峰强度逐渐减小。这表明,提高烧结温度有助于长石矿物成分和更多石英熔融(即玻璃化),提升烧结砖性能。值得注意的是,在整个烧结过程中,重晶石(BaSO4)衍射峰基本无明显变化,这表明重晶石并未参与固相反应。重晶石主要来源于钻井阶段的加重材料,稳定性较好,具有较高熔融温度(约1 500 ℃左右),因此,在烧结砖烧结过程中稳定存在。

    图 5  海上水基钻屑烧结砖XRD图
    Figure 5.  XRD patterns images of offshore water-based drill cuttings sintered bricks

    2) SEM。图6为不同水基钻屑掺入量条件下的烧结砖微观结构图。由图6(a)~6(e)的变化可以看出,随着水基钻屑掺入量增加,烧结砖孔隙率增加,密实度降低,同时熔融玻璃相减少,导致了烧结砖性能降低。这可能是由于钻井岩屑中有机质燃烧、矿物组分分解及易挥发物质挥发使得烧结过程中大量气体逸出。此外,由图7可以看出,水基钻井岩屑烧结砖中主要元素为O、Si、Al、Ca和Fe,这表明烧结砖的矿物骨架结构以硅铝酸盐结构为主[22]。值得注意的是,在烧结砖中存在Ba元素;结合物相分析结果(图5)可知,烧结砖结构中存在重晶石。

    图 6  海上水基钻屑掺量试样SEM图
    Figure 6.  SEM images of offshore water-based drill cuttings sintered bricks
    图 7  1 000 ℃烧结温度下烧结砖的SEM-EDS图
    Figure 7.  SEM-EDS images of sintered brick at 1 000 ℃

    通过微观性能分析可知,重晶石(BaSO4)在整个烧结过程中稳定存在,并未参与固相反应。本节以页岩为主要原料,加入不同比例重晶石(0、2%、4%、6%、8%、10%),以研究重晶石对烧结砖性能的影响,结果见图8。由图8可知,随着重晶石掺入量的增加,烧结砖性能明显降低,同时伴随着孔隙率增加。未添加重晶石的烧结砖性能最优,在仅添加了2%重晶石后,烧结砖抗压强度降低了6.24 MPa。这可能是因为,重晶石硬度较低(约莫氏3.0~3.5);同时,也因为试样吸水率增加了4.58%。当重晶石掺入比超过6%,烧结砖的抗压强度(9.40 MPa)和吸水率(20.21%)均不满足《烧结普通砖》(GB/T 5101-2017)[18]相关要求。一般情况下,烧结过程中矿物分解和物质挥发导致气体逸出使得孔隙增加,而熔融液相的填充有助于微孔闭合[23]。然而,重晶石稳定性极好且并不容易发生热分解,这意味着在烧成阶段重晶石会在相邻微孔边界形成隔断,阻止了熔融液相填充,使得密实度降低孔隙率增大,最终导致砖体产生隔层现象从而降低了抗压性能。因此,水基钻屑中重晶石的存在可能会导致烧结砖孔隙率增加,进而影响烧结砖的抗压性能。

    图 8  不同重晶石掺入量对烧结砖的性能影响
    Figure 8.  Effect of different BaSO4 on the properties of sintered bricks

    烧结砖在使用过程中不可避免会接触到水,为确保其环境安全性,对最佳工艺制备条件下(海上水基钻屑∶页岩∶煤炭=30∶65∶5、成型水分14%、(100±5) ℃干燥8 h、烧结温度1 000 ℃,保温时间3 h)制备的烧结砖浸出液中的污染物进行评估是必要的。检测结果如表5所示。由表5可知,经烧结处理后,水基钻屑烧结砖的水浸出液中污染物浓度均未超过《污水综合排放标准》(GB 8978-1996)[16]的排放限值。其中,Cl浓度降低极为明显,几乎实现了完全去除,这说明了高温烧结对氯离子去除是有效的。此外,烧结砖浸出液中大部分重金属也均未检出,这说明水基钻屑制烧结砖对重金属固化效果良好[24]。因此,从环境安全角度来看,制备烧结砖是一种适于处理海上水基钻屑的方法。

    表 5  水基钻屑烧结砖浸出液污染物和重金属质量浓度
    Table 5.  Test concentrations of contaminant and heavy metal in sintered bricks leachate mg·L−1
    烧结砖或相关标准TOCCODCl总汞总镉总铬总砷总铅总银
    烧结砖检测值4.000*10.000*0.0010.001*0.002*0.0450.004*0.003*
    《污水综合排放标准》GB 8978-1996200.000100.0000.0500.1001.5000.5001.0000.500
      注:*意为低于检出限;—意为未检出。
     | Show Table
    DownLoad: CSV

    1)在最佳制备工艺条件下(海上水基钻屑∶页岩∶煤炭=30∶65∶5、成型水分14%、(100±5) ℃干燥8 h、烧结温度1 000 ℃,保温时间3 h)制备的烧结砖性能优良,可满足《烧结普通砖》(GB/T 5101-2017)中MU15的要求。

    2)重晶石(BaSO4)对烧结砖性能降低极为明显,在砖体内部微孔边界形成隔断,阻止熔融液相填充,这也限制了钻屑在烧结砖中的掺入比。

    3)烧结砖浸出液中各项环保指标均满足国家标准《污水综合排放标准》(GB 8978-1996)中的要求,可以实现对海上水基钻屑的无害化处理。

  • [1] 邹万生, 张景来, 刘良国, 等. 有效微生物菌与水生植物联合净化珍珠蚌养殖废水[J]. 环境工程学报, 2012, 6(6): 1773-1778.

    Google Scholar Pub Med

    [2] 王梦亮, 马清瑞, 梁生康. 光合细菌对鲤鱼养殖水体生态系统的影响[J]. 水生生物学报, 2001, 25(1): 98-101. doi: 10.3321/j.issn:1000-3207.2001.01.016

    CrossRef Google Scholar Pub Med

    [3] HENDE S V D, BEELEN V, BORE G, et al. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: From lab reactors to an outdoor raceway pond[J]. Bioresource Technology, 2014, 159: 342-354. doi: 10.1016/j.biortech.2014.02.113

    CrossRef Google Scholar Pub Med

    [4] 黄雪娇, 杨冲, 罗雅雪, 等. 光合细菌在水污染治理中的研究进展[J]. 中国生物工程杂志, 2014, 34(11): 119-124.

    Google Scholar Pub Med

    [5] JEONG S K, CHO J S, KONG I S, et al. Purification of aquarium water by PVA gel-immobilized photosynthetic bacteria during goldfish rearing[J]. Biotechnology and Bioprocess Engineering, 2009, 14(2): 238-247. doi: 10.1007/s12257-008-0195-0

    CrossRef Google Scholar Pub Med

    [6] MENG F, ZHANG G M, YANG A Q, et al. Bioconversion of wastewater by photosynthetic bacteria: Nitrogen source range, fundamental kinetics of nitrogen removal, and biomass accumulation[J]. Bioresource Technology Reports, 2018, 4: 9-15. doi: 10.1016/j.biteb.2018.08.012

    CrossRef Google Scholar Pub Med

    [7] CHEWAPAT S, ANUWAT C, LA-ORSRI S. Optimization of three anoxygenic photosynthetic bacteria as feed to enhance growth, survival, and water quality in fairy shrimp (Streptocephalus sirindhornae) cultivation[J]. Aquaculture, 2021, 534: 7362-7368.

    Google Scholar Pub Med

    [8] NAHLIK A M, MITSCH W J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica[J]. Ecological Engineering, 2006, 28: 246-257. doi: 10.1016/j.ecoleng.2006.07.006

    CrossRef Google Scholar Pub Med

    [9] 刘旻慧, 闻学政, 张志勇, 等. 生物浮岛与漂浮植物对开放池塘水质净化效果[J]. 水生生物学报, 2017, 41(6): 1318-1326. doi: 10.7541/2017.163

    CrossRef Google Scholar Pub Med

    [10] SPITTERS C J T, KRAMER T. Changes in relative growth rate with plant ontogeny in spring wheat genotypes grown as isolated plants[J]. Euphytica, 1985, 3434(3): 833-847.

    Google Scholar Pub Med

    [11] 金树权, 周金波, 包薇红, 等. 5种沉水植物的氮、磷吸收和水质净化能力比较[J]. 环境科学, 2017, 38(1): 156-161.

    Google Scholar Pub Med

    [12] 李文祥, 李为, 林明利, 等. 浮床水蕹菜对养殖水体中营养物的去除效果研究[J]. 环境科学学报, 2011, 31(8): 1670-1675.

    Google Scholar Pub Med

    [13] 郑建初, 盛 婧, 张志勇, 等. 凤眼莲的生态功能及其利用[J]. 江苏农业学报, 2011, 27(2): 426-429. doi: 10.3969/j.issn.1000-4440.2011.02.034

    CrossRef Google Scholar Pub Med

    [14] 陈鸿, 黄世洋, 黎庶凯, 等. 绿狐尾藻人工湿地治理水污染模式及其在广西的应用[J]. 亚热带植物科学, 2016, 45(4): 386-390. doi: 10.3969/j.issn.1009-7791.2016.04.018

    CrossRef Google Scholar Pub Med

    [15] ROGERS K H, BREEN C M. Decomposition of Potamogeton criapus L. : The effects of drying on the pattern of mass and nutrient loss[J]. Aquattic Botany, 1982, 12: 1-12. doi: 10.1016/0304-3770(82)90002-X

    CrossRef Google Scholar Pub Med

    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.

    Google Scholar Pub Med

    [17] WOLSTENHOLME R, BAYES C D. An evaluation of nutrient removal by the reed bed treatment system at valleyfield, fife, Scotland[C]//Forth River Purification Board. Proceedings of the International Conference on the Use of Constructed Wetlands in Water Pollution Control. UK, 1990: 139-148.

    Google Scholar Pub Med

    [18] 陈双, 王国祥, 许晓光, 等. 水生植物类型及生物量对污水处理厂尾水净化效果的影响[J]. 环境工程学报, 2018, 12(5): 1424-1433. doi: 10.12030/j.cjee.201710013

    CrossRef Google Scholar Pub Med

    [19] LIU H, CHE X, ZHANG Y. Performance of sequencing microbead biofilters in a recirculating aquaculture system[J]. Aquacultural Engineering, 2013, 52: 80-86. doi: 10.1016/j.aquaeng.2012.10.002

    CrossRef Google Scholar Pub Med

    [20] SACHSE R, PETZOLDT T, BLUMSTOCK M, et al. Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality[J]. Environmental Modelling & Software, 2014, 61: 410-423.

    Google Scholar Pub Med

    [21] 黄永芳, 杨秋艳, 张太平, 等. 水培条件下两种植物根系分泌特征及其与污染物去除的关系[J]. 生态学杂志, 2014, 33(2): 373-379.

    Google Scholar Pub Med

    [22] 常会庆. 水生植物和微生物联合修复富营养化水体试验效果及机理研究[D]. 杭州: 浙江大学, 2006.

    Google Scholar Pub Med

    [23] 吴伟, 瞿建宏, 王小娟, 等. 水生植物一微生物强化系统对日本沼虾养殖水体的生物净化[J]. 生态与农村环境学报, 2011, 27(5): 108-111. doi: 10.3969/j.issn.1673-4831.2011.05.021

    CrossRef Google Scholar Pub Med

    [24] 许国晶, 杜兴华, 王春生, 等. 有效微生物菌群与大薸联合净化养殖水体的效果[J]. 江苏农业学报, 2014, 30(4): 764-771. doi: 10.3969/j.issn.1000-4440.2014.04.012

    CrossRef Google Scholar Pub Med

    [25] BUTGOON P S, REDDY K R, DEBUSK T A. Performance of subsurface flow wetlands with batch-load and continuous-flow conditions[J]. Water Environment Research, 1995, 67: 855-862. doi: 10.2175/106143095X131790

    CrossRef Google Scholar Pub Med

    [26] 于鲁冀, 范鹏宇, 陈涛, 等. 人工湿地生物降固池对悬浮物及总氮的净化效果[J]. 环境工程学报, 2016, 10(8): 4298-4302. doi: 10.12030/j.cjee.201503214

    CrossRef Google Scholar Pub Med

    [27] 袁新程, 施永海, 刘永士. 池塘养殖废水自由沉降及其三态氮、总氮和总磷含量变化[J]. 广东海洋大学学报, 2019, 39(4): 56-62. doi: 10.3969/j.issn.1673-9159.2019.04.009

    CrossRef Google Scholar Pub Med

    [28] HAMERSLEY M R, BRIAN L H. Control of denitrification in a septagetreating artificial wetland: The dual role of particulate organic carbon[J]. Water Research, 2002, 36(17): 4415-4427. doi: 10.1016/S0043-1354(02)00134-3

    CrossRef Google Scholar Pub Med

    [29] 罗勇胜, 李卓佳, 杨莺莺, 等. 光合细菌与芽孢杆菌协同净化养殖水体的研究[J]. 农业环境科学学报, 2006, 25(增刊): 206-210.

    Google Scholar Pub Med

    [30] 王超, 张文明, 王沛芳, 等. 黄花水龙对富营养化水体中氮磷去除效果的研究[J]. 环境科学, 2007, 28(5): 975-981. doi: 10.3321/j.issn:0250-3301.2007.05.008

    CrossRef Google Scholar Pub Med

    [31] KORNER S. Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel[J]. Acta Hydrochimica Et Hydrobiologica, 1999, 27(1): 27-31. doi: 10.1002/(SICI)1521-401X(199901)27:1<27::AID-AHEH27>3.0.CO;2-1

    CrossRef Google Scholar Pub Med

    [32] CHRISTIANSE N H, ANDERSEN F, JENSEN H S. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique[J]. Aquatic Botany, 2016, 128: 58-67. doi: 10.1016/j.aquabot.2015.10.002

    CrossRef Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  /  Tables(4)

Article Metrics

Article views(5270) PDF downloads(71) Cited by(0)

Access History

Purification efficiency of Takifugu obscurus aquaculture tail water by combination of photosynthetic bacteria and aquatic plants

Abstract: In order to achieve the high efficient purification of freshwater aquaculture tail water, the purification efficiency of Takifugu obscurus aquaculture tail water by photosynthetic bacteria combined with one of three different life forms of aquatic plants Eichhornia crassipes, Ipomoea aquatica and Myriophyllum verticillatum was studied through laboratory water quality determination methods, the changes and removal effects of various parameters of water quality (TAN, NO2-N, NO3-N, TSS, COD, TN and TP) were analyzed. The results showed that Ipomoea aquatica grew fastest of three aquatic plants, Eichhornia crassipes followed, and Myriophyllum verticillatum grew slowest. The combined systems of photosynthetic bacteria and aquatic plants had a significant purification effect on the freshwater aquaculture tail water, the removal effects of NO2-N, NO3-N, TSS, TN and TP in tail water by the combined systems with aquatic plants(PA1, PA2, PA3) were better than those of photosynthetic bacteria group (P) and control group (P<0.05), but the removal effects of TAN and COD were not significant (P>0.05), but they were higher than those of control group. Among them, the removal effect of the combined system with Ipomoea aquatica (PA2) was the best, and the concentrations of NO2-N, TN, TP and COD decreased rapidly within 6 days, the concentration of TAN decreased to the lowest value within 9 days, and gradually approached to the stable values. The final removal rates of TAN, NO2-N, NO3-N and TSS reached 94.34%, 99.7%, 99.11% and 97.23%, respectively, and the removal rates of TN, TP and COD reached 87.74%, 86.26% and 34.07%, respectively. All the indicators, except for TSS, could meet the first-level discharge standards in the Discharge Requirements for Tail Water of Freshwater Aquaculture (SC/T 9101-2018) required by the Ministry of Agriculture and Rural Areas of China. Therefore, the best combination was photosynthetic bacteria and Ipomoea aquatica. The research results can provide a reference for the design and construction of freshwater aquaculture tail water treatment system.

  • 池塘养殖是我国最普遍的养殖方式之一,在养殖过程中,为了保证养殖水质环境良好而采取频繁换水。但向外界环境排放大量未处理的养殖尾水,不仅危害水域生态环境,还会对养殖业的健康发展造成一定影响。有效净化养殖尾水,减少污染物排放量,对保证水产养殖业绿色、健康发展具有重要意义。目前,我国水产养殖业正朝着生态养殖和养殖水体污染零排放的方向发展[1]。许多国内外专家学者采用不同的方法对淡水养殖尾水的净化进行了研究。王梦亮等[2]研究发现,光合细菌可明显改善鲤鱼养殖水质,其中与对照组相比,氨氮下降了58.7%,硝态氮下降了29.4%,COD下降了21%。HENDE等[3]研究发现,光合细菌(Photosynthetic bacteria)可以高效地去除养殖尾水中的总氨氮(TAN)、亚硝基(NO2-N)、化学需氧量(CODMn)及增加溶氧量(DO),能显著净化养殖水质,有效改善养殖环境。黄雪娇等[4]研究表明,光合细菌对水中氨氮的去除率高达95%,并能有效吸收利用水中的亚硝酸盐、氨和硫化氢等,增加水中溶氧量可净化养殖水体。JEONG等[5]研究表明,固定化光合细菌系统能明显降低养殖尾水中NO2-N、NO3-N、TP以及TAN的含量。因此,开发一种健康高效、快速稳定的净化养殖尾水方法,已成为我国目前水产养殖业健康、可持续发展的关键性问题。

    近几年相关净化养殖尾水的研究表明,利用光合细菌(Photosynthetic bacteria)净化养殖尾水是一种成本低廉、节约能源、简便易行的方法,作为净化水体的有效手段被广泛运用于研究和实践[6-7]。凤眼莲(Eichhornia crassipes)、蕹菜(Ipomoea aquatica)和狐尾藻(Myriophyllum verticillatum)分别代表了3种不同生活类型的水生植物,在净化养殖尾水和生态修复中起到重要作用[8-11]。李文祥等[12]研究表明,蕹菜不仅可以改善养殖水体水质,减少对外界环境的污染,而且能增加养殖收入;而凤眼莲被公认为是去除水体中N、P效果最佳的植物[13]。陈鸿等[14]研究表明,狐尾藻具有较强的适应性和耐污染,而被作为污水处理及生态修复过程中首选的重要植物之一。由于传统研究多从单一物种出发,只是单独的利用有益菌或水生植物来净化养殖尾水,而目前把光合细菌与凤眼莲、蕹菜和狐尾藻(即光合细菌和3种不同生活类型的水生植物)相结合来净化养殖尾水的研究鲜见报道。由于水生植物及其根系可为光合细菌的生长、繁殖提供了良好的生长环境,直接或间接地促进光合细菌对氮、磷吸收和COD的去除[15],进而有利于光合细菌和水生植物更好地联合净化养殖尾水。因此,本研究利用光合细菌分别与3种不同的水生植物(凤眼莲、蕹菜和狐尾藻)组合构建光合细菌+水生植物联合净化体系,比较了光合细菌与不同生活类型的水生植物构建的联合净化体系对淡水养殖尾水中TAN、NO2-N NO3-N、TSS、COD、TN和TP的去除率,分析了不同联合净化体系对养殖尾水的净化效果,筛选出最佳组合,以期为今后设计和构建水产养殖尾水处理系统提供参考。

    • 实验所用菌株为市售生产用的光合细菌(Photosynthetic bacteria),由江苏省兴化市恒威生物技术有限公司提供:光合细菌,荚膜红假单胞菌(Rhodopseudomonas capsulata),液体状,活菌量为2×108 CFU·L−1;实验所用凤眼莲(Eichhornia crassipes)和狐尾藻(Myriophyllum verticillatum)均采购于杭州市水草市政园林绿化工程有限公司,蕹菜(Ipomoea aquatica)采自本研究所奉贤科研基地4号塘蕹菜养殖区,选取植株健壮且长势一致的蕹菜进行移栽培养。凤眼莲为浮水植物,俗称水葫芦,雨久花科凤眼莲属,是世界上公认的富集水体氮磷能力最强的水生植物之一;狐尾藻为多年生沉水植物,小二仙草科(Haloragaceae)狐尾藻属,常被作为污水处理及生态修复过程中首选的重要植物之一;蕹菜为一年生挺水植物,俗称空心菜,旋花科番薯属,有很强的耐高温和耐污性能。实验之前,先将3种水生植物暂养于陆基温室水泥池内,以备实验所用。

      本实验所用养殖尾水为上海市水产研究所奉贤科研基地(30°51′21″N,121°44′11″E) (以下简称奉贤科研基地)内的暗纹东方鲀养殖池塘的清塘尾水,池塘养殖面积约1 200 m2,平均水深1.5 m。养殖从2018年5月底开始至8月底结束,共计90 d,养殖鱼种为暗纹东方鲀(Takifugu obscurus),初始平均体质量为5.56 g,共4 488尾。养殖所用暗纹东方鲀均来自本研究所奉贤基地,于2018年5月经全人工集约化繁育并用鳗鱼配合饲料经过室内驯化(驯化率90%以上)培育而成的。养殖所用饲料为鳗鱼粉状配合饲料,购自江苏常熟市泉兴营养添加剂有限公司。饲料加工成团块状,现投现做,每天09:30投喂1次,日投饲量为暗纹东方鲀鱼体质量的1%~4%,以池塘中暗纹东方鲀当天下午15:00摄食完为准,具体投喂量根据天气和水温适当增减,阴雨天和低温天气少投喂,晴天多投喂。养殖过程中每2周换水1次,每次换1/3。养殖用水是经过60目(孔径250 μm)筛绢网过滤的内河水。池塘具有独立进排水设施,装配1台1.5 kW的叶轮增氧机。养殖期间,每天晚上18:00点开增氧机,第2天早上06:00关增氧机(阴雨天气,适当调整开机时间),水体为自然水温22.6~30.6 ℃,DO不低于7.26 mg·L−1,养殖过程中鱼体生长良好。

    • 1)实验方法与设计。养殖结束后,在奉贤科研基地卤虫孵化塑料大棚内进行养殖尾水的净化实验,将实验水泥池(长100 cm×宽100 cm×高105 cm)消毒清洗干净后,将养殖池塘中的暗纹东方鲀全部拉出,池塘排水,将最终的清塘尾水充分混匀,利用配管内径102 mm的QY65-7-2.2型潜水电泵,将其注入实验池内至70 cm处。分别选取生长良好的凤眼莲(A1)、蕹菜(A2)和狐尾藻(A3)成熟植株,同一植物统一修剪至尺寸一致,清洗干净后种植于实验池浮床网片上。本实验采用相同的自制浮床网片(图1)固定水生植物,按照水泥池的长宽,利用直径1.5 cm的竹竿和网目2.0 cm的聚乙烯网片制成50 cm×50 cm的正方形浮床网片。将浮床网片放入水面中间,将凤眼莲、蕹菜和狐尾藻按照等距平均插入网眼中。光合细菌(P)使用前需进行培养活化,光合细菌使用时需先将光合细菌和培养基放入盛水的白色透光塑料桶中不停搅拌混匀,后密封并放入持续光照条件下培养3 d,制成光合细菌浓度约为5×108 CFU·mL−1

      实验设4个处理组(P、PA1、PA2、PA3)和1个对照组(CG,无光合细菌和水生植物),每组设置3个平行,共15个实验池。其中,各平行中水生植物的初始量均是300 g,光合细菌浓度均为5×108 CFU·mL−1。实验在透明温室大棚内进行,实验期间在每个水泥池内微曝气,水体温度控制在(26.4±2.6) ℃,每次采样前补充由于蒸发而丧失的水分,补充蒸馏水至初始高度,实验周期为21 d。

      2)水样采集与测定方法。实验开始后每3 d (3、6、9、12、15、18、21 d)采样1次,每次在水泥池的同一位置离水面20 cm处取样500 mL。水样采集后存于4 ℃冰箱,并在2 d内完成水质指标测定。其中的200 mL水样用于总固体悬浮物(TSS)测定,剩下水样用于总氨氮(TAN)、亚硝基氮(NO2-N)、硝基氮(NO3-N),化学需要量(CODMn)、总氮(TN)和总磷(TP)测定。

      本实验测定指标和方法[16]如下:TAN测定采用苯酚-次氯酸盐法;NO2-N测定利用重氮-偶氮比色法;NO3-N测定利用锌镉还原-重氮偶氮法;TN测定采用碱性过硫酸消解紫外分光光度法(GB 11894-1989);TP测定采用钼酸铵比色法(GB 11893-1989);CODMn测定采用碱性高锰酸钾法,TSS采用滤纸重量法(GB 11901-1989)。温度(T)、酸碱度(pH)均采用美国产YSI仪器即时测定。光合细菌计数采用平板计数法。

    • 应用Excel2007整理实验数据,利用SPSS17.0软件对不同组合间水质指标进行单因素One-way ANOVA方差分析及Duncan氏法多重比较,所得结果以平均值±标准差(mean±SD)来表示,且P<0.05表示差异显著。水生植物的相对生长速率[10]按照式(1)进行计算,水体中各指标去除率按照式(2)进行计算。

      式中:RGR为植物的相对生长速率,%·d−1B0Bt分别为实验开始和结束时植物的总生物量,g;t为实验周期,d。

      式中:Wi为第i天的去除率;Ci为第i天的浓度,mg·L−1C0为初始浓度,mg·L−1

    2.   结果与讨论
    • 本实验所用清塘尾水的初始参数指标为:pH=7.12±0.03、TAN (0.335±0.069) mg·L−1NO2-N (0.824±0.078) mg·L−1NO3-N (3.280±0.293) mg·L−1、CODMn (9.141±0.098) mg·L−1、TSS (110.40±31.13) mg·L−1、TN (7.317±0.243) mg·L−1和TP (1.348±0.048) mg·L−1,其中TAN、NO2-N、NO3-N、TSS、TN和TP浓度均大于《淡水养殖尾水排放要求》(SC/T 9101-2018)的二级排放标准,严重超标。但pH和CODMn均符合其要求的一级排放标准(pH为6.0~9.0,CODMn小于或等于15 mg·L−1)。

      表1可见,实验结束后,各组中凤眼莲(A1)、蕹菜(A2)和狐尾藻(A3)的生物量均明显增加,A1和A2的生物量均已翻倍。其中,A2的生物量显著大于A1(P<0.05),A1显著大于A3(P<0.05)。A1和A2的相对生长率均显著大于A3(P<0.05),但两者间无明显差异(P>0.05)。这可能与蕹菜和凤眼莲具有发达的根系有关,发达根系更有利于吸收水体中的营养物质[17],从而促进其快速生长。其中生长最快的是蕹菜,相对生长率为4.61%,其次为凤眼莲,狐尾藻生长最慢。陈双等[18]利用水生植物类型及生物量对污水处理厂尾水净化效果的影响进行研究,结果表明,不同生物量对空心菜生长存在明显影响,空心菜前期在未达到最大生物量880 g前生长较快。这与本实验结果蕹菜生长迅速,且结束生物量均未达到880 g相一致。因此,建议在选择蕹菜净化水质时,要及时对其进行采摘,以确保其在最好的生长状态,达到最佳的净化效果。

    • 在水产养殖过程中,总氨氮是评价养殖尾水排放标准的重要参数指标,当水中含量大于0.50 mg·L时,对鱼体有毒害作用[19]图2(a)显示了TAN浓度的变化情况。实验开始后,各实验组中TAN浓度迅速降低,并均在9 d后逐渐趋于稳定;而对照组TAN浓度降低缓慢,在15 d后趋于稳定;至实验结束时,各组之间TAN的去除率均无明显差异(P>0.05) (表2)。这表明光合细菌与水生植物联合去除TAN的速度均快于对照组,但去除率均未产生显著差异。其原因可能是:一方面栽种的水生植物可直接吸收水体中的氨氮,但由于水生植物或光合细菌未达到一定数量时,对氨氮的净化效果未产生显著差异;另一方面,水体中氨氮存在氨化和同化作用以及氨态氮的挥发而导致实验组和空白组的去除率差异不显著。李文祥等[12]研究浮床水蕹菜对养殖水体中营养物的去除效果发现,水蕹菜池塘与对照塘中的氨氮没有明显差异。陈双等[18]利用水生植物类型及生物量对污水处理厂尾水净化效果的影响进行研究发现,不同类型植物对氨氮的净化效果(30 d)无显著差异。这均与本研究结果相似。

      图2(b)中显示NO2-N浓度的变化情况。光合细菌和水生植物组合对NO2-N的去除速度较快,在第6天时迅速降至最低,并趋于稳定。对照组因水体中本身存在的微生物和消化-反硝化作用也逐渐降低,但明显慢于实验组。实验结束时,PA1、PA2和PA3组对NO2-N的去除率均显著大于P组和对照组(P>0.05),均大于99.60%,而3者间均无明显差异(P<0.05) (表3)。这表明在光合细菌处理尾水时,栽种水生植物对去除尾水中亚硝基氮具有显著促进作用。造成此结果的原因是,光合细菌与水生植物净化养殖尾水可形成协同作用,光合细菌可把亚硝基和有机氮转化成水生植物能吸收的硝基氮和氨氮,然后水生植物及时吸收大量的无机氮,特别是硝基氮和氨氮,这样形成一个氮转化的通路,从而不断降低尾水中的NO2-N浓度。邹万生等[1]利用有效微生物菌与水生植物联合净化珍珠蚌养殖废水的研究中也发现相似的结果。

      微生物是水环境介质中氨化、硝化和反硝化作用的驱动者,会导致水体中硝基氮含量也会发生一定的变化[20]。如图2(c)所示,PA2组的NO3-N浓度降低最快,于15 d时降至最低;其次为PA3组,于18 d降至最低,但各组均比去除TAN和NO2-N时间长。这主要是因为水环境介质中氨化、硝化和反硝化作用,将不稳定的TAN和NO2-N转化为NO3-N所致。至实验结束时,PA2组的NO3-N去除率最大,为99.11%;PA3组次之,去除率为98.40%,PA2和PA3组去除率显著大于PA1(P>0.05),PA1显著大于P和空白组(表2)。上述结果表明,光合细菌和水生植物组合去除硝基氮效果均好于光合细菌组,其中光合细菌+蕹菜组去除效果最佳。产生此结果的原因主要有2点:一是水生植物可直接吸收硝基氮,通过光合细菌的转化,蕹菜对硝基氮的吸收效果依次大于狐尾藻、凤眼莲;二是水生植物根系能形成生物膜,尾水中的光合细菌等有益菌可附着于根系上,同时水生植物能使根系泌氧速率加快[21],根系形成的微氧环境有利于还原型和氧化型有机氮之间的相互转换,无机氮再经过同化作用被水生植物吸收,从而提高了硝基氮的去除率。上述研究结果与常会庆[22]及吴伟等[23]的研究结果一致,但与许国晶等[24]的研究结果不同。可能是由于有益菌种类不同对N元素吸收能力的不同导致的。本研究利用的是光合细菌,而许国晶利用的除了光合细菌还包括硝化细菌(Ni-trobacteria) 乳酸菌(Lactobacill)放线菌(Actinomy-cetes) 酵母菌(Yeast) 及芽孢杆菌(Bacillus cohn)。

    • 化学需氧量(COD)作为评价养殖水体受有机物污染程度的重要标志,是水质监测的基本参数。图3(a)显示了各组COD随时间的变化情况。PA1、PA2和PA3组中COD随时间逐渐降低,并在6 d时趋于稳定;而P组耗氧有机物(以COD计)先降低后略有升高,最终COD去除率显著大于PA3组和对照组(P<0.05),但与PA1组和PA2组无显著差异(P>0.05),去除率大于35.24%(表3)。本研究发现,单光合细菌组的COD去除效果最好,其次为光合细菌+蕹菜、光合细菌+凤眼莲和光合细菌+狐尾藻组,但均大于对照组,说明本实验中的光合细菌和3种水生植物组合对COD的去除效果不显著。造成此结果的主要原因可能是从水生植物根系等部位分泌产生有机、无机碳源以及氧化有机物所需的O2供应不同而导致的[25]。另一个原因是,本实验的初始COD值较低(已达到较低的浓度水平),故未产生显著差异。相似的研究结果也出现在常会庆[22]对2种水生植物与固定化光合菌联合作用的研究中。

      图3(b)显示了各组TSS浓度随时间的变化情况。各实验组TSS浓度降低速率均比对照组快,其中PA2和PA3降低最快,并于6 d时开始趋于稳定;其次为PA1,于9 d时开始趋于稳定。如表3所示,PA1、PA2、PA3组TSS的去除率均明显大于P组和对照组(P<0.05),P组TSS去除率也显著大于对照组(P<0.05),其中PA2去除率最大,为97.23%。这说明光合细菌能有效去除尾水中的TSS,并在含有光合细菌的尾水中,栽种水生植物对TSS去除有促进作用。产生此结果的原因主要是水生植物具有发达的根系,在尾水中悬浮颗粒和有机物颗粒均可附着于植物根部,并在光合细菌的作用下进行分解,从而导致TSS浓度迅速降低[26]。但空白组在21 d后的TSS去除率也达到了82%。导致此结果的原因是:一方面,由于养殖尾水自身的自由沉降起到重要作用[27];另一方面,尾水本身中含有可降解有机物颗粒的微生物,降低了TSS浓度。因此,建议在养殖尾水净化实践中,可将浑浊的高浓度养殖尾水沉静一段时间,再进行净化处理,可以达到事半功倍的效果。

    • 在光合细菌与水生植物联合处理过的养殖尾水中,其TN、TP浓度的变化规律呈现一定的差异性。图4(a)显示了各组TN浓度随时间的变化情况。各实验组的TN浓度降低速率均大于对照组,其中PA1、PA2和PA3组降低速度最快,并于第6 天时开始趋于稳定,去除效果较好。相同的结果也出现在许国晶等[24]在EM菌液+大薸组对TN的去除速率的研究中。产生此结果的主要原因:一方面是水生植物和光合细菌可直接吸收和利用水中N元素;另一方面是水生植物可以通过根系向水体中分泌氧气和有机碳,可以为硝化-反硝化的有益菌提供生长微域环境,从而促进生物脱氮[28-29]。如表4所示,实验结束后,PA2、PA3组对TN的去除率明显大于P组和对照组(P<0.05),但与PA1和PA3组无显著差异(P>0.05),其中PA2去除率最高,为87.74%。常会庆[22]研究发现,在经过19 d的处理后,光合细菌与漂浮植物黄花水龙(Jussiaea stipulacea Ohwi)结合去除养殖废水中TN的效果比与沉水植物伊乐藻(Elodea nuttallii)结合去除效果显著,TN去除率分别达到98.01%,这与本研究结果相一致。

      图4(b)可见,PA1、PA2和PA3组的TP浓度降低的速率均明显大于P组和对照组,在6 d内迅速降低,由1.348 mg·L−1降至0.185 mg·L−1,并逐渐趋于稳定;至实验结束时这3组TP浓度均显著低于P组和对照组(P<0.05)。这表明光合细菌和水生植物联合作用去除养殖尾水中TP的效果更好。产生此结果的主要原因是:一方面,水生植物根部可附着大量的微生物群落,在其根部的好氧区,可增加有益菌吸附的反应面积,从而促进了磷的去除[17];另一方面,水生植物可分泌助凝物质,从而加速吸附和沉降水体中的固体悬浮物,这部分主要体现在颗粒态磷浓度的下降[11]。而这3组间TP浓度无显著差异,这可能是栽种的水生植物未达到一定生物量所致[24]。如表4所示,PA1、PA2和PA3组的TP去除率均显著大于P组和对照组(P<0.05),P组显著大于对照组(P<0.05),其中去除率最大的为PA2,去除率为86.26%,明显高于王超等[30]研究中TP的去除率(25%)和许国晶等[24]研究中TP的去除率(60.32%)。

      KORNER[31]研究表明,有益微生物能有效快速降解、转化和吸收水体中的有机营养物质,对养殖尾水中的TN、TP有明显的抑制作用。CHRISTIANSE等[32]研究表明,养殖水体中的磷元素主要是依靠水生植物直接吸收、根部吸附和其自身的沉淀作用等途径消除,本研究也证明了此结果。同时,本研究发现,光合细菌可与水生植物能形成协同作用,可更有效的去除TN和TP。总氮的去除机理是利用光合细菌将亚硝基和有机氮转化成无机氮,水生植物及时吸收大量的无机氮,从而促进水生植物生长,降低了总氮含量;而水生植物产生的发达根系又可为光合细菌提供更大的附着面积,有助于光合细菌的生长繁殖,进而加快有机氮转化为无机氮,形成一个氮转化的通路,最终实现迅速降低尾水中总氮含量。总磷的去除主要分2种方式:一是无机磷被植物直接吸收;二是有机磷被光合细菌等微生物吸收作为营养物质储存在体内,再经过氧化分解后以无机磷PO34-P形式释放出来,最终被水生植物吸收从而降低了尾水中总磷含量。

    3.   结论
    • 1)光合细菌与水生植物联合净化组对暗纹东方鲀养殖尾水的净化效果均优于光合细菌组,TAN、NO2-N、NO3-N、耗氧有机物(以COD计)、TN和TP浓度均达到《淡水养殖尾水排放要求》(SC/T 9101—2018)的一级排放标准,TSS浓度均达到二级排放标准。

      2)光合细菌+蕹菜组(PA2)对尾水净化速度最快,去除效果最好,TAN、NO2-N、TN、TP和耗氧有机物(以COD计)的浓度于9 d内降至最低,NO3-N和TSS于15 d时降至最低,对TAN、NO2-N、NO3-N、TSS、TN和TP的去除率均大于86.26%,COD去除率达到34.07%。就污染物去除率而言,光合细菌+蕹菜>光合细菌+凤眼莲>光合细菌+狐尾藻>光合细菌。

      3)在构建的光合细菌+水生植物联合净化组中,蕹菜(A2)生长最快,相对生长率为4.61%;其次为凤眼莲(A1),相对生长率为3.90%;狐尾藻(A3)生长最慢,相对生长率为2.37%。

      4)光合细菌与水生植物(蕹菜、凤眼莲、狐尾藻)间具有协同作用,在含有一定浓度光合细菌的淡水养殖尾水中栽种一定数量的水生植物,能提高净化养殖尾水的能力。

    Figure (4)  Table (4) Reference (32)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
  • 表 1  烧结砖原料配比
    Table 1.  Raw material proportion of sintered brick
    配方代号
    各组分质量分数/%含水率/%
    页岩水基钻屑煤炭
    W-18510514
    W-27520514
    W-36530514
    W-45540514
    W-54550514
     | Show Table
    DownLoad: CSV
  • 表 2  水基钻屑和页岩的化学成分
    Table 2.  Chemical compositions of water-based drill cuttings and shale %(质量分数)
    供试原料SiO2Al2O3Fe2O3CaONa2OK2OMgOBaOSO3ClLOI
    海上水基钻屑53.4215.337.894.724.153.332.221.880.942.4522.10
    陆上水基钻屑29.9410.105.3219.300.271.021.5412.406.9015.60
    页岩61.0017.906.305.401.403.403.200.146.80
      注:—意为未检出。
     | Show Table
    DownLoad: CSV
  • 表 3  水基钻屑重金属浸出质量浓度
    Table 3.  Mass concentrations of heavy metals in water-based drill cuttings leachate mg·L−1
    供试原料或相关标准总铬
    海上水基钻屑0.003*0.006*0.0020.004*0.002*0.001*0.1790.0040.003*0.010
    陆上水基钻屑0.0110.0450.0040.004*0.0040.0040.1500.0070.003*0.010
    《危险废物鉴别标准 浸出毒性鉴别》
    (GB 5085.3-2007)
    100.000100.0001.0005.00015.0000.020100.0005.0005.0005.000
      注:*意为低于检出限。
     | Show Table
    DownLoad: CSV
  • 表 4  水基钻屑浸出液污染物质量浓度
    Table 4.  Mass concentrations of the contaminants in water-based drill cuttings leachate mg·L−1
    供试原料或相关标准TOCCODCl总汞总镉
    海上水基钻屑73.500568.0002.86×1030.0010.005
    陆上水基钻屑50.400146.6000.0000.004
    《污水综合排放标准》
    GB 8978-1996
    20.000100.0000.0500.100
      注:—意为未检出。
     | Show Table
    DownLoad: CSV
  • 表 5  水基钻屑烧结砖浸出液污染物和重金属质量浓度
    Table 5.  Test concentrations of contaminant and heavy metal in sintered bricks leachate mg·L−1
    烧结砖或相关标准TOCCODCl总汞总镉总铬总砷总铅总银
    烧结砖检测值4.000*10.000*0.0010.001*0.002*0.0450.004*0.003*
    《污水综合排放标准》GB 8978-1996200.000100.0000.0500.1001.5000.5001.0000.500
      注:*意为低于检出限;—意为未检出。
     | Show Table
    DownLoad: CSV