TANG Yuli, QIAN Ping, ZHANG Haizhen, ZHOU Hong. Capacity for absorbing and fixing heavy metal of Cd and Pb of eight species of ornamental aquatic plants[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5313-5319. doi: 10.12030/j.cjee.201701060
Citation: TANG Yuli, QIAN Ping, ZHANG Haizhen, ZHOU Hong. Capacity for absorbing and fixing heavy metal of Cd and Pb of eight species of ornamental aquatic plants[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5313-5319. doi: 10.12030/j.cjee.201701060

Capacity for absorbing and fixing heavy metal of Cd and Pb of eight species of ornamental aquatic plants

  • Received Date: 14/04/2017
    Accepted Date: 10/01/2017
    Available Online: 26/08/2017
    Fund Project:
  • Aquatic sediment is the main source of water pollutant.Aquatic plants have the ability to purify water.Potted planting by polluted soil was conducted to analyze the ability to absorb Cd and Pb by eight different aquatic plants.The results indicated that the concentration of Cd in Cyperus prolifer increased with the concentration in soil.When the concentration of Cd in soil is 5 mg·kg-1 DW,the accumulated concentration is 1.13 mg·kg-1 DW and 1.63 mg·kg-1 DW in aboveground parts and belowground parts respectively.The content of Pb in belowground parts of experimental plants are 10 to 20 times to the aboveground parts.The content of Pb in belowground parts of Cyperus prolifer and Typha orientalis planted in soil with high concentration of Pb reached 20 mg·kg-1 DW.Transfer and accumulation coefficient of Cd in soil of Iris wilsonii,Cyperus prolifer,Nymphaea are larger than 1,which suggested that Cyperus prolifer has the ability to accumulate Cd from soil while Cyperus prolifer,Typha orientalis have the ability to capture Pb from soil.
  • [1] CHANEY R L. Plant uptake of inorganic waste constituents[M]//PARR J F, MARSH P B, KIA J M. Land Treatment of Hazardous Wastes.Park Ridge, N J, USA:Noyers Data Corporation, 1983:50-76

    Google Scholar Pub Med

    [2] 王海慧,郇恒福,罗瑛,等.土壤重金属污染及植物修复技术[J]. 中国农学通报, 2009, 25(11):210-214

    Google Scholar Pub Med

    [3] 张芳芳,赵立伟,苏亚勋,等. 城市土壤重金属污染的大生物量植物修复技术研究进展[J]. 天津农业科学, 2014, 20(3):47-51

    Google Scholar Pub Med

    [4] 陈磊,胡敏予. 重金属污染土壤的植物修复技术研究进展[J]. 化学与生物工程, 2014, 31(4):6-8

    Google Scholar Pub Med

    [5] 陈婧,林振景,孟媛媛,等. 土壤重金属污染的植物修复及超富集植物的研究进展[J]. 中国环境管理干部学院学报, 2011, 21(1):69-71

    Google Scholar Pub Med

    [6] 胡鹏杰,李柱,钟道旭,等. 我国土壤重金属污染植物吸取修复研究进展[J]. 植物生理学报, 2014, 50(5):577-584

    Google Scholar Pub Med

    [7] TANG M D, HU F, WU L H, et al. Effects of copper-enriched composts applied to copper-deficient soil on the yield and copper and zinc uptake of wheat[J]. International Journal of Phytoremediation, 2009, 11:82-94

    Google Scholar Pub Med

    [8] CAO X D, MA L N, SHIRALIPOUR A, et al. Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L.[J]. Environmental Science and Pollution Research, 2010, 17:586-594

    Google Scholar Pub Med

    [9] COTTER-HOWELLS J D, CHAMPNESS P E,CHARNOCK J M. Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS[J]. Mineralogical Magazine, 1999, 63(6):777-789

    Google Scholar Pub Med

    [10] 邢艳帅,乔冬梅,朱桂芬,等. 土壤重金属污染及植物修复技术研究进展[J]. 中国农学通报, 2014, 30(17):208-214

    Google Scholar Pub Med

    [11] CUNNINGHAM S D, BERTI W R, HUANG J W. Phytoremediation of contaminated soils[J]. Trends in Biotechnology, 1995, 13(9):393-397

    Google Scholar Pub Med

    [12] DUSHENKOV V, KUMAR P B, MOTTO H, et al. Rhizofiltration:The use of plants to remove heavy metals from aqueous streams[J]. Environmental Science & Technology, 1995, 29(5):1239-1245

    Google Scholar Pub Med

    [13] 黄永杰,刘登义,王友保,等. 八种水生植物对重金属富集能力的比较研究[J]. 生态学杂志, 2006, 25(5):541-545

    Google Scholar Pub Med

    [14] 王敏,唐景春,王斐. 常见水生植物对富营养化和重金属复合污染水体的修复效果研究[J]. 水资源与水工程学报, 2013, 24(2):50-56

    Google Scholar Pub Med

    [15] 张海锋,胥焘,黄应平,等.水生植物修复沉积物中重金属污染的机制及影响因素研究进展[J]. 亚热带水土保持, 2015, 27(1):37-41

    Google Scholar Pub Med

    [16] 王谦,成水平. 大型水生植物修复重金属污染水体研究进展[J]. 环境科学与技术, 2010, 33(5):96-102

    Google Scholar Pub Med

    [17] 季斌,杭小帅,梁斌,等. 湖泊沉积物重金属污染研究进展[J]. 污染防治技术, 2013, 26(5):33-40

    Google Scholar Pub Med

    [18] 张海珍,唐宇力,陆骏,等. 西湖景区土壤典型重金属污染物的来源及空间分布特征[J]. 环境科学, 2014, 35(4):1516-1522

    Google Scholar Pub Med

    [19] 邵泽强,李翠兰,张晋京. 花卉植物修复铅污染土壤的研究现状及展望[J]. 环境科学与管理, 2010, 35(9):23-25

    Google Scholar Pub Med

    [20] 陆成云,黎霞,王代旺,等. 花卉修复污染环境的研究现状及发展潜力[J]. 江西农业学报, 2015,27(2):49-53

    Google Scholar Pub Med

    [21] 王晓雯. 不同酸消解方法在土壤重金属测定中的比较研究[J]. 中国环境管理干部学院学报, 2014,24(6):66-68

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2070) PDF downloads(467) Cited by(0)

Access History

Capacity for absorbing and fixing heavy metal of Cd and Pb of eight species of ornamental aquatic plants

Fund Project:

Abstract: Aquatic sediment is the main source of water pollutant.Aquatic plants have the ability to purify water.Potted planting by polluted soil was conducted to analyze the ability to absorb Cd and Pb by eight different aquatic plants.The results indicated that the concentration of Cd in Cyperus prolifer increased with the concentration in soil.When the concentration of Cd in soil is 5 mg·kg-1 DW,the accumulated concentration is 1.13 mg·kg-1 DW and 1.63 mg·kg-1 DW in aboveground parts and belowground parts respectively.The content of Pb in belowground parts of experimental plants are 10 to 20 times to the aboveground parts.The content of Pb in belowground parts of Cyperus prolifer and Typha orientalis planted in soil with high concentration of Pb reached 20 mg·kg-1 DW.Transfer and accumulation coefficient of Cd in soil of Iris wilsonii,Cyperus prolifer,Nymphaea are larger than 1,which suggested that Cyperus prolifer has the ability to accumulate Cd from soil while Cyperus prolifer,Typha orientalis have the ability to capture Pb from soil.

Reference (21)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint