[1]
|
WANG X, LIANG C H, YIN Y. Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil[J]. Journal of Soils and Sediments, 2015, 15(7):1531-1537
Google Scholar
Pub Med
|
[2]
|
GARAU G, CASTALDI P, SANTONA L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma, 2007, 142(1/2):47-57
Google Scholar
Pub Med
|
[3]
|
LIU W, YANG Y S, LI P J, et al. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices[J]. Journal of Hazardous Materials, 2009, 161(2/3):878-883
Google Scholar
Pub Med
|
[4]
|
SUN Y B, SUN G H, XU Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013, 193-194:149-155
Google Scholar
Pub Med
|
[5]
|
BABAK B, MADJID D, MIKLAS S. Response of vegetables to cadmium-enriched soil[J]. Water, 2014,6(5):1246-1256
Google Scholar
Pub Med
|
[6]
|
李取生,楚蓓,石雷,等.珠江口滩涂湿地土壤重金属分布及其对围垦的影响[J].农业环境科学学报,2007, 26(4):1422-1426
Google Scholar
Pub Med
|
[7]
|
YANG Y M, NAN Z R, ZHAO Z J, et al. Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the polluted oasis soil, Northwest of China[J]. Journal of Environmental Sciences, 2011, 23(8):1368-1374
Google Scholar
Pub Med
|
[8]
|
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851
Google Scholar
Pub Med
|
[9]
|
SILVEIRA M L, ALLEONI L R F, O'CONNOR A G, et al. Heavy metal sequential extraction methods a modification for tropical soils[J]. Chemosphere, 2006, 64(11):1929-1938
Google Scholar
Pub Med
|
[10]
|
MICHAEL W, EVANGELOU H, HATICE D, et al. The influence of humic acids on the phytoextraction of cadmium from soil[J]. Chemosphere, 2004, 57:207-213
Google Scholar
Pub Med
|
[11]
|
李花粉,郑志宇,张福锁,等.铁对小麦吸收不同形态镉的影响[J].生态学报, 1999, 19(2):170-173
Google Scholar
Pub Med
|
[12]
|
赵转军,南忠仁,王兆炜,等.Cd、Zn复合污染菜地土壤中重金属形态分布与植物有效性[J].兰州大学学报(自然科学版), 2010, 46(2):1-5
Google Scholar
Pub Med
|
[13]
|
胡妮,陈柯罕,李取生,等.盐胁迫下苋菜品种有机酸变化对Cd累积和耐盐性的影响[J].农业环境科学学报, 2016, 35(5):858-864
Google Scholar
Pub Med
|
[14]
|
ZENG F R, CHEN S, MIAO Y, et al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress[J]. Environmental Pollution, 2008, 155(2):284-289
Google Scholar
Pub Med
|
[15]
|
BAO T, SUN T H, SUN L N. Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyper accumulator Solanum nigrum L. and non-hyper accumulator Solanum lycopersicum L.[J]. African Journal of Biotechnology, 2011, 10(75):11718-17180
Google Scholar
Pub Med
|
[16]
|
STANHOPE K G, YOUNG S D, HUTCHINSON J J, et al. Use of isotopic dilution techniques to assess the mobilization of non-labile Cd by chelating agents in phytoremediation[J]. Environmental Science & Technology, 2000, 19(3):152-155
Google Scholar
Pub Med
|
[17]
|
MENCH M,MARTIN E. Mobilization of cadmium and other metals from two soils by root eaudates of Zen mays L., Nicotyiana tabarum L. and Nicotiana rustion L.[J]. Plant and Soil, 1991, 132(2):187-196
Google Scholar
Pub Med
|
[18]
|
ELLOIT H A, HUANG C P. Adsorption of some Cu-amino acid complex at soild-solution interface[J]. Environmental Science & Technology, 1980, 14:87-93
Google Scholar
Pub Med
|
[19]
|
朱秀芳, 曹秋娥, 汪国松,等. 以氢化阿魏酸为假模板制备的印迹聚合物对阿魏酸的识别[J]. 分析化学, 2006, 34(s1):118-122
Google Scholar
Pub Med
|
[20]
|
黄世超. 若干丹参酚酸的降解和解离性质研究[D]. 杭州:浙江大学, 2016
Google Scholar
Pub Med
|
[21]
|
张英华. 中药前胡、常山及水杨酸、原儿茶酸的荧光光谱研究[D]. 石家庄:河北师范大学, 2006
Google Scholar
Pub Med
|
[22]
|
鲁如坤.土壤农业化学分析法[M].北京:中国农业出版社,1999
Google Scholar
Pub Med
|
[23]
|
王淑君,胡红青,李珍,等.有机酸对污染土壤中铜和镉的浸提效果[J].农业环境科学学报, 2008, 27(4):1627-1632
Google Scholar
Pub Med
|
[24]
|
杜彩艳,祖艳群,李元.石灰配施猪粪对Cd, Pb和Zn污染土壤中重金属形态和植物有效性的影响[J].武汉植物学研究, 2008, 26(2):170-174
Google Scholar
Pub Med
|
[25]
|
陈媛.土壤中镉及镉的赋存形态研究进展[J].广东微量元素科学, 2007, 14(7):7-13
Google Scholar
Pub Med
|
[26]
|
KIM J O, LEE Y W, CHUNG J. The role of organic acids in the mobilization of heavy metals from soil[J]. KSCE Journal of Civil Engineering, 2013, 17:1596-1602
Google Scholar
Pub Med
|
[27]
|
胡群群, 李志安, 黄宏星, 等. 柠檬酸促进土壤镉解吸的机理研究[J].生态环境学报, 2011, 20(Z2):1338-1342
Google Scholar
Pub Med
|
[28]
|
JIANG H, LI T, HAN X, et al. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils[J]. Environmental Monitoring and Assessment, 2012, 184:6325-6335
Google Scholar
Pub Med
|
[29]
|
陈传平,固旭,周苏闽,等.不同有机酸对矿物溶解的动力学实验研究[J].地质学报, 2008, 82(7):1008-1012
Google Scholar
Pub Med
|
[30]
|
何发虎,毛希安.水溶液中组氨酸与金属镉离子配位点的研究[J].波谱学杂志, 1996, 13(1):25-33
Google Scholar
Pub Med
|
[31]
|
YANG Y Y, JUNG J Y, SONG W Y, et al. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance[J]. Plant Physiology, 2000, 124(3):1019-1026
Google Scholar
Pub Med
|
[32]
|
WUANA R A, OKIEIMEN F E, IMBORVUNGU J A. Removal of heavy metals from a contaminated soil using organic chelating acids[J]. International Journal of Environmental Science and Technology, 2010, 7(3):485-496
Google Scholar
Pub Med
|
[33]
|
HE B Y, YU D P, CHEN Y, et al. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth(Amaranthus mangostanus L.)[J]. Chemosphere, 2016, 171:588-594
Google Scholar
Pub Med
|