我国59个长期覆膜样地的表层土壤中邻苯二甲酸酯污染状况分析

靳拓1,2,许丹丹2,薛颖昊2,习斌2,孙建鸿2,彭可为1,张杰3,金德才4,*

1. 湖南农业大学资源环境学院,长沙 410128 2. 农业农村部农业生态与资源保护总站,北京 100125 3. 湖南省花垣县农业农村局,湘西土家族苗族自治州 416499 4. 中国科学院生态环境研究中心,北京 100085

摘要:随着地膜在农业生产上的广泛应用,邻苯二甲酸酯(PAEs)的污染不可忽视。为了评估我国具有农膜覆盖历史的农田土壤中PAEs的污染状况,本研究采用气相色谱-质谱联用法对采集的59个土壤样品中的6种PAEs化合物含量进行了检测分析。结果表明,59个土壤样品中检测出5种PAEs化合物,邻苯二甲酸二乙酯(DEP)未检出。6种PAEs的总含量为0.221~4.304 mg·kg-1,平均值为0.433 mg·kg-1。其中邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二丁酯(DBP)和邻苯二甲酸丁基苄基酯(BBP)这3种单体是土壤中主要的PAEs污染物,检出率均为100%,平均含量分别为0.162、0.134和0.101 mg·kg-1。参照美国优先控制PAEs化合物的控制标准,35.60%的土壤样品DBP含量超过控制标准,表明调查的农田土壤已存在一定程度PAEs污染风险。与其他地区农田土壤相比,覆膜历史较长的农田土壤中PAEs处于同一污染水平。由于该类污染物能够被农作物吸收,其潜在的农产品质量安全风险仍需要特别关注。

关键词:邻苯二甲酸酯;土壤;污染水平;长期覆膜

随着我国经济的发展,塑料类制品得到广泛使用。邻苯二甲酸酯(PAEs)作为塑化剂被大量应用于食品包装、装修材料、医疗器械、化妆品和玩具等各种日用产品中,也作为地膜被广泛用于农业的生产活动中[1]。由于PAEs和塑料制品间非紧密结合,PAEs很容易游离到周边环境当中[2]。目前,塑化剂已经成为全球性的环境污染物,在河流、湖泊、土壤和空气等环境介质中检均能测出不同程度的塑化剂污染[3-4]。由于塑化剂可通过吸入、摄入或皮肤吸收进入人体,在人的血清、尿液、母乳以及其他生物组织中均检测到塑化剂的存在[5]。PAEs作为一类环境激素类化合物,在人体内具有类似于雌性激素作用,不但可导致内分泌紊乱,而且具有胚胎毒性、生殖毒性和遗传毒性[6],同时生活在PAEs污染水平高的环境中会增加人们患病的概率,如Yang等[7]发现PAEs暴露是促进肌肉减少症发生的一个重要因子;Zhang等[8]发现室内灰尘中的PAEs浓度和儿童哮喘症状呈正相关,尤其在女孩当中更为显著。目前邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)和邻苯二甲酸二正辛酯(DNOP)6种PAEs已被美国环境保护局(US EPA)列为优先控制污染物,我国也将其中的3种邻苯二甲酸酯类化合物(DMP、DBP和DNOP)列为优先控制的有毒污染物[9]

据统计,我国每年塑料地膜使用面积高达1 500万hm2左右,是世界上塑料地膜使用量最多的国家,地膜覆盖在农田保温保湿、促进农作物产量等方面发挥了重要作用,然而其中的添加成分如塑化剂也对农田环境造成了污染。近年来关于覆膜农田土壤的PAEs污染调查较多,如郑顺安等[10]调查发现,在西北地膜高投入的5个典型县,土壤中6种优先控制的PAEs含量为0.103~1.117 mg·kg-1,均值为(0.532±0.175) mg·kg-1。易鸳鸯等[11]采集了新疆五家渠地区不同地膜使用年限的棉田土壤样品,对6种优先控制的PAEs含量进行了检测,结果表明,土壤样品中6种PAEs总量范围为1.360~4.490 mg·kg-1,均值为(2.770±0.919) mg·kg-1。然而,目前对我国不同覆膜年限的农田土壤的PAEs污染状况研究仍然很少,或者仅集中于一个地点的样品分析。本文选择我国59个不同覆膜年限的农田作为研究对象,采集农田土壤样品并采用气相色谱质谱联用方法对土壤中6种PAEs化合物进行检测,重点对其含量水平、组成情况及分布特点进行了分析,并对其污染风险进行了评估,旨在为我国覆膜农田土壤污染管控工作提供参考依据。

1 材料与方法(Materials and methods)

1.1 土壤样品采集

在实地调研的基础上,选择我国28个省份/自治区的长期覆膜农田,布设表层土壤采样点59个,具体采样点位信息如表1所示。2019年5月采样,先对采样点表层进行清扫,采用五点法采集土壤样品,混合成一个样品,每样点所采土样约1 kg,记下样点实际地理位置和种植作物等基本信息。土壤样品带回实验室后自然风干,除去小石子、杂草等外源物质,过1 mm的不锈钢筛,处理好后,置于棕色玻璃瓶中保存,等待实验室分析。同时,通过走访交谈、问卷调查等手段,获得农田土壤覆膜信息。

表1 59个样点的采样分布
Table 1 Distribution of 59 sampling points

样点Sampling site东经/(°) East longitude/(°)北纬/(°) North latitude/(°)地区Region1117.06678332.501700安徽省淮南市 Huainan City, Anhui Province2116.50845031.866365安徽省六安市 Liu’an City, Anhui Province3116.31320039.392400北京市大兴区 Daxing District, Beijing4116.73833325.806389福建省龙岩市 Longyan City, Fujian Province5104.98930035.776700甘肃省白银市 Baiyin City, Gansu Province695.67193040.484930甘肃省酒泉市 Jiuquan City, Gansu Province7107.63420035.057300甘肃省庆阳市 Qingyang City, Gansu Province8114.03339524.560640广东省韶关市 Shaoguan City, Guangdong Province9109.72813623.605547广西壮族自治区来宾市 Laibin City, Guangxi Zhuang Autonomous Region10111.11026123.726181广西壮族自治区梧州市 Wuzhou City, Guangxi Zhuang Autonomous Region11106.93916727.505278贵州省遵义市 Zunyi City, Guizhou Province12109.83583318.466111海南省陵水县 Lingshui County, Hainan Province13114.84472236.472778河北省邯郸市 Handan City, Hebei Province14114.52367340.720591河北省张家口市 Zhangjiakou City, Hebei Province15114.09546441.205264河北省张家口市 Zhangjiakou City, Hebei Province16114.10444434.515277河南省开封市 Kaifeng City, Henan Province17114.53229134.594492河南省开封市 Kaifeng City, Henan Province18113.31839032.797433河南省驻马店市Zhumadian City, Henan Province19126.40059745.653477黑龙江省哈尔滨市Harbin City, Heilongjiang Province20131.00080045.327750黑龙江省鸡西市 Jixi City, Heilongjiang Province2144.520310129.647830黑龙江省牡丹江市 Mudanjiang City, Heilongjiang Province22110.26789330.649793湖北省恩施土家族苗族自治州 Enshi Tujia and Miao Autonomous Prefecture, Hubei Province23115.23610030.440300湖北省黄冈市 Huanggang City, Hubei Province24111.95322928.962442湖南省常德市 Changde City, Hunan Province25110.77040229.430144湖南省张家界市 Zhangjiajie City, Hunan Province26124.30305645.505556吉林省白城市 Baicheng City, Jilin Province27124.23305643.311944吉林省四平市 Siping City, Jilin Province28125.70111145.217222吉林省松原市 Songyuan City, Jilin Province29118.94750033.641944江苏省淮安市 Huaian City, Jiangsu Province30120.90833331.668333江苏省苏州市 Suzhou City, Jiangsu Province31115.39428527.365871江西省吉安市 Ji’an City, Jiangxi Province32119.76159941.872068辽宁省朝阳市 Chaoyang City, Liaoning Province33122.30519439.460833辽宁省大连市 Dalian City, Liaoning Province34122.24730642.446976辽宁省阜新市 Fuxin City, Liaoning Province35107.11527840.692778内蒙古自治区巴彦淖尔市 Bayannur City, Inner Mongolia Autonomous Region36118.67083341.900833内蒙古自治区赤峰市 Chifeng City, Inner Mongolia Autonomous Region37114.17416741.836667内蒙古自治区乌兰察布市 Ulanchap City, Inner Mongolia Autonomous Region38105.38897235.938944宁夏回族自治区固原市 Guyuan City, Ningxia Hui Autonomous Region39101.94361136.365278青海省海东市 Haidong City, Qinghai Province40116.55000736.067940山东省泰安市 Tai’an City, Shandong Province41118.64444436.945556山东省潍坊市Weifang City, Shandong Province42117.30404735.128933山东省枣庄市 Zaozhuang City, Shandong Province43111.93470837.257370山西省吕梁市 Lvliang City, Shanxi Province

续表1样点Sampling site东经/(°) East longitude/(°)北纬/(°) North latitude/(°)地区Region44111.91727237.328767山西省吕梁市 Lvliang City, Shanxi Province45109.96361134.751111陕西省渭南市 Weinan City, Shaanxi Province46109.61877538.490681陕西省榆林市 Yulin City, Shaanxi Province47104.11061930.995833四川省成都市 Chengdu City, Sichuan Province48102.44718626.748385四川省凉山彝族自治州 Liangshan Yi Autonomous Prefecture, Sichuan Province49116.86733139.633814天津市武清区 Wuqing District, Tianjin5084.00000042.000000新疆维吾尔自治区阿克苏地区 Aksu Prefecture, Xinjiang Uygur Autonomous Region5187.63600844.280881新疆生产建设兵团第六师 The Sixth Division of Xinjiang Production and Construction Corps5286.36391246.274953新疆生产建设兵团第十师 The Tenth Division of Xinjiang Production and Construction Corps5381.55906743.857368新疆生产建设兵团第四师 The Fourth Division of Xinjiang Production and Construction Corps5476.28694439.415556新疆维吾尔自治区喀什地区 Kashi Prefecture, Xinjiang Uygur Autonomous Region5584.20130044.368000新疆维吾尔自治区塔城地区Tacheng Prefecture, Xinjiang Uygur Autonomous Region56103.95027826.066389云南省曲靖市 Qujing City, Yunnan Province57103.52138927.283333云南省昭通市 Zhaotong City, Yunnan Province58120.39660529.734238浙江省绍兴市 Shaoxing City, Zhejiang Province59108.71260029.262600重庆市黔江区 Qianjiang District, Chongqing

1.2 仪器与试剂

Thermo Scientific ITQ 900气相色谱质谱联用仪(美国);RE-52AA旋转蒸发仪(上海亚荣生化仪器厂,中国);KQ-100KDE超声波清洗器(昆山市超声仪器有限公司,中国);Mixplus旋涡混合器(合肥艾本森科学仪器有限公司,中国)。

6种邻苯二甲酸酯类化合物混合标液(坛墨质检科技股份有限公司,北京,中国),浓度为1 000 μg·mL-1,包括DMP、DEP、DBP、BBP、DEHP和DNOP;正己烷、乙酸乙酯和二氯甲烷等均为色谱纯(ThermoFisher Scientific,美国);固相萃取柱为PSA/Silica复合填料玻璃柱(1 000 mg,6 mL)(广州信谱徕科学仪器有限公司,中国)。

1.3 样品前处理

取2 g干燥过筛后的土壤样品,搅拌均匀,加入10 mL乙酸乙酯,超声振荡40 min,重复3次,静置至少30 min,收集2 mL上层清液,待净化。采用固相萃取法对提取液进行净化,固相萃取小柱为PSA/Silica复合填料玻璃柱。依次向柱中加入10 mL二氯甲烷、6 mL乙酸乙酯,弃去流出液;将待净化液加入柱中,控制流速1 滴·s-1,收集2 mL流出液,后进行溶剂置换,正己烷准确定容至2 mL,过0.22 μm的有机相滤膜,供色谱质谱联用仪(GC-MS)分析。

利用GC-MS进行样品分析。色谱条件:DB-5 MS石英毛细管色谱柱(30 m×0.25 mm,0.25 μm);载气为高纯氦气(纯度>99.999%),载气流量1.5 mL·min-1;进样方式为不分流进样,进样量为1.0 μL;进样口温度280 ℃;柱温为程序升温(初始柱温60 ℃,保持1 min;以20 ℃·min-1升温至220 ℃,保持1 min;再以5 ℃·min-1升温至280 ℃,保持5 min)。质谱条件:电子轰击电离源(EI);电离能量70 eV;传输线温度280 ℃;离子源温度230 ℃;采用SIM模式进行质谱全扫描。采用0.5、1、2、3、4和5 mg·L-1浓度的6种PAEs做工作曲线。土壤中添加6种PAEs用以计算回收率,回收率均>77%。

1.4 数据处理

采用Excel 2016和SPSS 22.0进行统计分析,使用Pearson方法分析覆膜年限、比例等与土壤中PAEs含量之间的相关性。

2 结果(Results)

2.1 邻苯二甲酸酯工作曲线的绘制

根据上述GC-MS检测条件,6种PAEs混合标准液中各单体能够完全分离(图1)。将6种PAEs标准样品配制成6个浓度,分别为0.5、1、2、3、4和5 mg·L-1,以PAEs标样浓度为横坐标,以峰面积为纵坐标,仪器自动绘制标准曲线,并计算测试样品的浓度。

图1 6种邻苯二甲酸酯(PAEs)标准溶液的色谱图(2 mg·L-1)
注: 1为邻苯二甲酸二甲酯(DMP);2为邻苯二甲酸二乙酯(DEP);3为邻苯二甲酸二丁酯(DBP);4为邻苯二甲酸丁基苄基酯(BBP);
5为邻苯二甲酸二(2-乙基己基)酯(DEHP);6为邻苯二甲酸二正辛酯(DNOP)。
Fig. 1 Chromatogram of 6 phthalates (PAEs) mixed standard solution (2 mg·L-1)
Note: 1 represents dimethyl phthalate (DMP); 2 represents diethyl phthalate (DEP); 3 represents dibutyl phthalate (DBP); 4 represents benzyl
butyl phthalate (BBP); 5 represents di-(2-ethylhexyl) phthalate (DEHP); 6 represents di-n-octyl phthalate (DNOP).

2.2 土壤中PAEs化合物的总含量(Σ6PAEs)分析

表2中的检测数据表明,在59个样地土壤中6种邻苯二甲酸酯类塑化剂的总浓度(∑6PAEs)从最低的0.221 mg·kg-1(以土壤干质量计)至最高的4.304 mg·kg-1(以土壤干质量计),最高浓度的土壤采自广西壮族自治区梧州市的农田土壤,其次为采自重庆市黔江区和云南省昭通市的农田土壤,分别为0.614 mg·kg-1(以土壤干质量计)和0.611 mg·kg-1(以土壤干质量计),最低的为安徽省淮南市的农田土壤。所测试的59个样地中6种PAEs的含量均值为0.433 mg·kg-1,其中仅有1个样品>1 mg·kg-1

表2 59个样地土壤中的PAEs含量
Table 2 Concentration of PAEs in the 59 soil samples (mg·kg-1)

样点Sampling siteDMPDEPDBPBBPDEHPDNOP∑6PAEs10.002ND0.0380.0630.10.0190.22120.017ND0.1420.0950.2480.0180.51930.003ND0.1010.0660.1220.0130.30740.006ND0.0390.0740.1440.0160.27950.005ND0.0830.1060.1560.0190.36860.012ND0.1830.1250.2390.0230.58270.003ND0.110.110.2080.0270.45880.003ND0.050.1010.1640.0280.34590.005ND0.0410.1030.1070.0270.283100.011ND3.7230.1330.3590.0784.304110.001ND0.0360.0760.1020.0090.224120.004ND0.040.0910.0940.0320.261130.003ND0.0410.0710.1370.0140.265140.005ND0.0250.0830.0960.0210.229150.001ND0.0390.0540.10.0290.223160.011ND0.0810.2430.1560.0530.544170.007ND0.0940.1060.1360.030.372180.005ND0.2510.1310.160.0270.573190.004ND0.0960.0930.1930.0240.41200.005ND0.0570.0630.1530.0240.302210.006ND0.0350.080.1120.0350.268220.017ND0.0910.1090.2120.0440.472230.001ND0.0390.0720.1310.0320.274240.012ND0.0990.1120.2320.0370.493250.009ND0.0590.0950.1760.0380.377260.003ND0.0370.0780.1120.0150.245270.009ND0.0860.1290.2150.0490.488280.004ND0.0620.0930.1210.0190.299290.004ND0.0430.0820.1090.0370.276300.003ND0.0320.0820.180.0340.331310.007ND0.050.1160.1690.0320.373320.004ND0.0430.0950.1090.0380.289330.009ND0.0740.1510.1630.0670.463340.003ND0.0420.0830.1060.0380.272350.022ND0.1120.1310.2190.060.543360.011ND0.140.1040.1820.020.458370.007ND0.0520.1190.1240.0290.331380.01ND0.0780.1130.1710.0260.398390.005ND0.0490.0760.1050.0240.259400.004ND0.0360.1020.1090.0160.267410.002ND0.050.1160.1830.0460.397420.007ND0.0580.110.1440.0260.345430.006ND0.0970.0980.2690.0420.512440.006ND0.120.0960.1940.0180.435450.01ND0.1060.1540.190.0610.522460.004ND0.0440.10.1110.0190.279470.01ND0.0740.1270.1740.050.435480.002ND0.0480.1050.1230.0480.325490.004ND0.0310.0690.1270.0150.247500.011ND0.0840.1050.2350.0380.474

续表2样点Sampling siteDMPDEPDBPBBPDEHPDNOP∑6PAEs510.0004ND0.0560.0850.1410.0140.297520.01ND0.0660.0890.1760.0270.368530.005ND0.0720.0850.1280.0230.312540.004ND0.0420.0790.1140.0130.252550.003ND0.0450.0970.1350.0230.302560.003ND0.0450.0780.1020.0080.235570.004ND0.0850.1110.3880.0240.611580.007ND0.0730.0930.1390.0410.352590.016ND0.1530.1440.2480.0530.614

注:ND表示未检出。

Note: ND means not detected.

2.3 土壤中PAEs化合物单体的含量特征

按照PAEs种类来说,DEHP、DBP和BBP为主要的3种检出类型,平均浓度分别达到0.162、0.133和0.101 mg·kg-1(以土壤干质量计)(表3),浓度最高的分别为广西壮族自治区梧州市、重庆市黔江区和云南省昭通市的农田土壤,浓度最低的为采集于安徽省淮南市的农田土壤。本研究检测的6种单体中,DEP的检出率为0,其余单体的检出率均为100%。这6种化合物在土壤中的平均含量依为:DEHP>DBP>BBP>DNOP>DMP,其中DEHP占总的PAEs浓度比为8.349%~63.43%,DBP占∑6PAEs浓度比为9.702%~86.494%,BBP占∑6PAEs浓度比为3.095%~44.721%。

表3 59个土壤样地中单个PAEs的检测数据统计
Table 3 Statistics of single PAEs pollution in the 59 soil samples

极大值/(mg·kg-1)Maximum/(mg·kg-1)极小值/(mg·kg-1)Minimum/(mg·kg-1)均值/(mg·kg-1)Mean/(mg·kg-1)检出率/%Detectable rate/%DMP0.0220.00040.006100DBP3.7230.0250.134100BBP0.2430.0540.101100DEHP0.3880.0940.162100DNOP0.0780.0080.031100

2.4 土壤PAEs种类和∑6PAEs与地膜用量、年限和覆膜比例的相关性分析

对59个样地土壤中6种PAEs含量及∑6PAEs与地膜用量、覆膜年限、覆膜比例进行了相关性分析,结果如表4所示。不考虑土壤性质和采样地点等差异,未发现6种优控PAEs化合物和∑6PAEs的含量与地膜用量等存在显著相关。

表4 土壤PAEs浓度与地膜使用之间的Pearson相关性分析
Table 4 Pearson correlation coefficients of PAEs concentration and mulch film application

地膜用量Amount of mulching film覆膜年限Film covering period覆膜比例Film covering proportionDMPr-0.1800.1280.085P0.1730.3350.521DBPr-0.046-0.113-0.123P0.730.3940.352BBPr-0.241-0.066-0.050P0.0660.6190.709DEHPr-0.1550.0770.018P0.240.5630.893DNOPr-0.044-0.070-0.229P0.7430.6010.081∑6PAEsr-0.076-0.099-0.119P0.5690.4570.371

注:PAEs浓度单位为mg·kg-1,地膜用量单位为kg·a-1,覆膜年限单位为a,覆膜比例为百分比(%)。

Note: The units of PAEs concentration, amount of mulching film, film covering period and film covering proportion are mg·kg-1, kg·a-1, a and %, respectively.

2.5 土壤中PAEs的超标情况

由于我国还没出台农田PAEs控制标准,故与美国纽约州土壤中6种PAEs化合物控制和治理标准进行了比较(表5),DMP只有1个点位超标,而DBP超标率是35.60%,其他4种PAEs的污染情况均未超过控制标准。所有的样品中PAEs含量均未超过土壤治理标准。其中广西壮族自治区梧州市农田土壤中的DBP污染超标最严重,达到了45.96倍。其次为来源于河南省驻马店市的农田土壤,DBP超标3.010倍。

表5 美国纽约州土壤PAEs化合物控制标准与治理标准[12]
Table 5 Soil allowable concentration and cleanup
objective of PAEs compounds in New York State, USA[12]

PAEs控制标准/(mg·kg-1)Control standard/(mg·kg-1)治理标准/(mg·kg-1)Governance standard/(mg·kg-1)DMP0.022.0DEP0.0717.1DBP0.0818.1BBP1.21550.0DEHP4.3550.0DNOP1.2050.0

3 讨论(Discussion)

目前关于农田土壤中的PAEs污染水平的研究较多,但是对于长期覆膜的农田土壤关注相对较少。

本研究的检测结果表明,59个样地土壤中6种优控PAEs化合物总含量(∑6PAEs)为最低的0.221 mg·kg-1(以土壤干质量计)至最高的4.304 mg·kg-1(以土壤干质量计),均值为0.433 mg·kg-1(以土壤干质量计)。长期覆膜的6种PAEs含量与其他文献的结果相比,并没有显著差异,如李国秀等[13]调查了西安市杨凌区设施蔬菜基地土壤中PAEs的污染状况,结果显示,在分析的土壤样品中检测出12种PAEs化合物,总含量为0.005~3.524 mg·kg-1,平均值为0.060 mg·kg-1。陈佳祎等[14]采集了北京市的10个典型设施蔬菜基地60个大棚的土壤样品,15种PAEs总的浓度范围为0.05~2.02 mg·kg-1,平均浓度为0.98 mg·kg-1。赵胜利等[15]对珠江三角洲城市群中的典型中小城市的菜园和果园表层土壤中的16种PAEs进行了测定,结果显示,东莞土壤的16种PAEs总含量最高,平均达3.710 mg·kg-1;最低的为惠州土壤,为0.600 mg·kg-1。周斌[16]对黄淮海地区设施菜地土壤和大田土壤中16种PAEs的污染情况及农业投入品开展了调查,结果显示PAEs在黄淮海地区农田土壤的检出率为100%,16种PAEs浓度范围在0.066~3.646 mg·kg-1之间,平均值为0.912 mg·kg-1。冯艳红等[17]发现江苏省设施菜地土壤样品中6种PAEs范围为0.042~0.276 mg·kg-1,平均值为0.117 mg·kg-1,检出率为100%。吴山等[18]采用GC-FID检测了汕头市蔬菜产区的63个表层土壤样品,结果显示,汕头市蔬菜产区土壤样品中6种PAEs化合物总浓度范围为0.018~9.303 mg·kg-1,平均含量为0.721 mg·kg-1。李玉双等[19]分析了土壤中US EPA优控的6种PAEs在沈阳市新民蔬菜基地设施农业土壤的分布特征,结果显示6种PAEs浓度范围为0.52~1.73 mg·kg-1,平均值为0.94 mg·kg-1,∑6PAEs含量超过1 mg·kg-1占比32%。相对于我国国内在塑化剂污染状况的大量调查,国外在农田土壤塑化剂污染方面开展的工作较少,Tran等[20]在法国丰特奈莱布里伊的农业土壤中检测到9种PAEs污染物,其中DMP和DNOP未检出,DEP、DBP、BBP和DEHP的总浓度为0.260 mg·kg-1。Rhind等[21]调查发现苏格兰表土中DEHP的污染水平为0.025~1.596 mg·kg-1,平均值为0.258 mg·kg-1。由此可见,本研究中的我国59个样地的表层土壤中检测到的PAEs总量相较于其他农业功能区,处在同一个数量级。对于城市土壤,廖健等[9]分析了杭州西湖景区土壤环境中PAEs的污染情况,西湖景区6种PAEs浓度范围为0.597~7.360 mg·kg-1,均值为2.963 mg·kg-1;张文娟等[22]在西安市三环内采集了62个表层土壤,发现其中6种PAEs总浓度为1.54~153.17 mg·kg-1,平均值为10.95 mg·kg-1。从平均值来比较,59个长期覆膜农田土壤的6种PAEs浓度显著低于城市表层土壤。

59个长期覆膜农田表层土壤中PAEs的构成主要以DBP和DEHP为主,二者约占∑6PAEs的43.508%~94.843%,主要的PAEs种类和其他的文献报道也基本一致,如陈佳祎等[14]发现DBP在10个典型设施蔬菜基地的土壤中含量最高,其次为DEHP。戴华鑫等[23]发现DBP和DEHP是河南植烟土壤中的主要PAEs污染物,均值分别达到了0.348 mg·kg-1和0.131 mg·kg-1。在江苏省不同设施菜地土壤中,DBP和DEHP同样是占比前2位的PAEs种类[17]。张小红等[24]发现DEHP、DBP和邻苯二甲酸二异丁酯(DIBP)是宁夏回族自治区6种不同土地利用类型共87个土壤样品中最主要的3种污染单体,分别占6种优控PAEs污染物的58.3%、13.9%和11.8%。吴山等[18]发现汕头市蔬菜土壤样品中检测到的6种PAEs污染物以DBP(50.1%)和DEHP(21.8%)为主。在笔者检测的59个样地土壤中,DEHP是最重要的污染物,其次为DBP。DBP和DEHP在农田土壤中的污染及其风险,需要引起广泛关注。

长期使用塑料薄膜可增加土壤中PAEs的污染程度。李瑾等[25]发现土壤中PAEs含量累积与地膜使用年限成正比。易鸳鸯等[11]发现覆膜前5年,PAEs残留随着时间增长不断增加,5年后土壤PAEs总量和覆膜年限的增长并非呈现线性增长趋势。由于我们研究的样地分布在不同的地理位置,土壤性质差异很大。同时,PAEs在土壤中能被微生物降解或者被作物吸收,因此它的含量是动态变化的,Kong等[26]发现DBP在不同类型土壤中的降解存在着显著差异,而微生物在DBP的降解速度方面起着重要的作用,暗示着土壤中的PAEs残留量与不同土壤中微生物种群差异显著相关,而微生物的演替又受土壤理化性质的影响,尤其是pH[27]。而pH被认为与土壤的PAEs含量成显著负相关[23]。本研究结果暗示着在更大的区域尺度,土壤性质对PAEs残留量影响更大。对PAEs的风险管控的同时,应考虑地区土壤与环境的差异。

陈佳祎等[14]在60个北京设施蔬菜基地土壤中,检测到有57个样品DBP超过控制标准,超标率95%,最高超标14倍。戴华鑫等[23]调查发现DBP在河南植烟土壤中超标率超过97%。李国秀等[13]在对西安市杨凌区蔬菜基地土壤检测分析中发现,DBP的平均含量超过控制标准,超标率为50%。本研究中,59个长期覆膜农田土壤样品中6种PAEs含量与美国优控的6种PAEs化合物的控制标准相比,21个样地土壤中的DBP含量均超过控制标准,超标率35.60%。由此可见,全国各地农业土壤中的DBP均有超标现象,亟待重视。

参考文献(References):

[1] Deng H, Li R L, Yan B Z, et al. PAEs and PBDEs in plastic fragments and wetland sediments in Yangtze Estuary [J]. Journal of Hazardous Materials, 2021, 409: 124937

[2] Wu Q H, Liu M, Ma X X, et al. Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC [J]. Microchimica Acta, 2012, 177(1): 23-30

[3] Wei L Y, Li Z H, Sun J T, et al. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China [J]. The Science of the Total Environment, 2020, 726: 137978

[4] Le T M, Nguyen H M N, Nguyen V K, et al. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam [J]. The Science of the Total Environment, 2021, 788: 147831

[5] Specht I O, Toft G, Hougaard K S, et al. Associations between serum phthalates and biomarkers of reproductive function in 589 adult men [J]. Environment International, 2014, 66: 146-156

[6] Swan S H, Main K M, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure [J]. Environmental Health Perspectives, 2005, 113(8): 1056-1061

[7] Yang Y, Ju L, Fan J Y, et al. Association of urinary phthalate metabolites with sarcopenia in US adults: NHANES 1999-2006 [J]. Environmental Science and Pollution Research International, 2022, 29(5): 7573-7582

[8] Zhang J L, Sun C J, Lu R C, et al. Associations between phthalic acid esters in household dust and childhood asthma in Shanghai, China [J]. Environmental Research, 2021, 200: 111760

[9] 廖健, 邓超, 陈怡, 等. 西湖景区土壤中邻苯二甲酸酯污染水平、来源分析和空间分布特征[J]. 环境科学, 2019, 40(7): 3378-3387

Liao J, Deng C, Chen Y, et al. Pollution levels, sources, and spatial distribution of phthalate esters in soils of the West Lake scenic area [J]. Environmental Science, 2019, 40(7): 3378-3387 (in Chinese)

[10] 郑顺安, 倪润祥, 宝哲, 等. 西北地膜高投入地区土壤与玉米邻苯二甲酸酯(PAEs)含量水平与健康风险评估[J]. 环境化学, 2020, 39(7): 1839-1850

Zheng S A, Ni R X, Bao Z, et al. Occurrence and risk assessment of phthalic acid esters (PAEs) in soils and agricultural products from farmlands associated with intensively plastic film mulching, Northwest China [J]. Environmental Chemistry, 2020, 39(7): 1839-1850 (in Chinese)

[11] 易鸳鸯, 谢芳, 胡潇涵, 等. 新疆五家渠地区不同覆膜年限棉田土壤中邻苯二甲酸酯残留特征[J]. 新疆农业大学学报, 2020, 43(3): 221-227

Yi Y Y, Xie F, Hu X H, et al. Residual characteristics of phthalate acid esters (PAEs) in cotton fields with different mulching film years in Wujiaqu area, Xinjiang [J]. Journal of Xinjiang Agricultural University, 2020, 43(3): 221-227 (in Chinese)

[12] New York State Department of Environmental Conservation of USA. TAGM 4046 Determination of soil cleanup objectives and cleanup levels [S]. New York: New York State Department of Environmental Conservation of USA, 1994

[13] 李国秀, 崔利辉, 刘伟, 等. 杨凌区设施蔬菜基地土壤中邻苯二甲酸酯污染状况分析[J]. 湖北农业科学, 2021, 60(13): 119-122

Li G X, Cui L H, Liu W, et al. Analysis of phthalate esters pollution in soils of facility vegetable bases of Yangling [J]. Hubei Agricultural Sciences, 2021, 60(13): 119-122 (in Chinese)

[14] 陈佳祎, 李成, 栾云霞, 等. 北京设施蔬菜基地土壤中邻苯二甲酸酯的污染水平及污染特征研究[J]. 食品安全质量检测学报, 2016, 7(2): 472-477

Chen J Y, Li C, Luan Y X, et al. Pollution characteristics and pollution level of phthalic acid ester in soils of facility vegetable bases of Beijing [J]. Journal of Food Safety & Quality, 2016, 7(2): 472-477 (in Chinese)

[15] 赵胜利, 杨国义, 张天彬, 等. 珠三角城市群典型城市土壤邻苯二甲酸酯污染特征[J]. 生态环境学报, 2009, 18(1): 128-133

Zhao S L, Yang G Y, Zhang T B, et al. Characteristics of pathalic acid esters in soils in typical cities of Pearl River Delta [J]. Ecology and Environmental Sciences, 2009, 18(1): 128-133 (in Chinese)

[16] 周斌. 黄淮海地区农田土壤邻苯二甲酸酯污染特征与成因研究[D]. 北京: 中国农业科学院, 2020: 34-35

Zhou B. Research on characteristics and mechanism of phthalate acid esters pollution in farmland of the Huang-Huai-Hai region of China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 34-35 (in Chinese)

[17] 冯艳红, 张亚, 郑丽萍, 等. 江苏省不同地区设施菜地土壤-蔬菜中邻苯二甲酸酯分布特征[J]. 生态与农村环境学报, 2017, 33(4): 308-316

Feng Y H, Zhang Y, Zheng L P, et al. Distribution characteristics of phthalic acid esters in soil and vegetables under greenhouse in different areas of Jiangsu Province, China [J]. Journal of Ecology and Rural Environment, 2017, 33(4): 308-316 (in Chinese)

[18] 吴山, 李彬, 梁金明, 等. 汕头市蔬菜产区土壤-蔬菜中邻苯二甲酸酯(PAEs)污染分布特征研究[J]. 农业环境科学学报, 2015, 34(10): 1889-1896

Wu S, Li B, Liang J M, et al. Distribution characteristics of phthalic acid esters in soils and vegetables in vegetable producing areas of Shantou City, China [J]. Journal of Agro-Environment Science, 2015, 34(10): 1889-1896 (in Chinese)

[19] 李玉双, 陈琳, 郭倩, 等. 沈阳市新民设施农业土壤中邻苯二甲酸酯的污染特征[J]. 农业环境科学学报, 2017, 36(6): 1118-1123

Li Y S, Chen L, Guo Q, et al. Pollution characteristics of phthalate esters in greenhouse agricultural soil in Xinmin, Shenyang City [J]. Journal of Agro-Environment Science, 2017, 36(6): 1118-1123 (in Chinese)

[20] Tran B C, Teil M J, Blanchard M, et al. Fate of phthalates and BPA in agricultural and non-agricultural soils of the Paris area (France) [J]. Environmental Science and Pollution Research, 2015, 22(14): 11118-11126

[21] Rhind S M, Kyle C E, Kerr C, et al. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils [J]. Environmental Pollution, 2013, 182: 15-27

[22] 张文娟, 王利军, 苏少林, 等. 西安市表层土壤中邻苯二甲酸酯(PAEs)含量与构成[J]. 环境监测管理与技术, 2020, 32(2): 37-41

Zhang W J, Wang L J, Su S L, et al. Contents and composition of PAEs in the topsoil in Xi’an [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(2): 37-41 (in Chinese)

[23] 戴华鑫, 张艳玲, 李亮, 等. 河南植烟土壤6种邻苯二甲酸酯污染特征分析[J]. 中国烟草学报, 2021, 27(3): 56-64

Dai H X, Zhang Y L, Li L, et al. Analysis of pollution characteristics of six phthalate esters (PAEs) in tobacco field soil in Henan Province [J]. Acta Tabacaria Sinica, 2021, 27(3): 56-64 (in Chinese)

[24] 张小红, 王亚娟, 陶红, 等. 宁夏土壤中PAEs污染特征及健康风险评价[J]. 中国环境科学, 2020, 40(9): 3930-3941

Zhang X H, Wang Y J, Tao H, et al. Study on pollution characteristics and health risk assessment of phthalates in soil of Ningxia [J]. China Environmental Science, 2020, 40(9): 3930-3941 (in Chinese)

[25] 李瑾, 周涛, 张扬, 等. 地膜对农田土壤及玉米籽粒邻苯二甲酸酯累积状况的影响[J]. 农业环境科学学报, 2020, 39(8): 1767-1773

Li J, Zhou T, Zhang Y, et al. Effects of plastic film mulching on phthalate esters accumulation in farmland soil and maize grain [J]. Journal of Agro-Environment Science, 2020, 39(8): 1767-1773 (in Chinese)

[26] Kong X, Bai Z B, Jin T, et al. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations [J]. Journal of Hazardous Materials, 2022, 422: 126914

[27] Wang C Y, Zhou X, Guo D, et al. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China [J]. Annals of Microbiology, 2019, 69(13): 1-13

Analysis of Phthalate Esters Pollution in 59 Topsoils of Long-term Film Mulching Plots in China

Jin Tuo1,2, Xu Dandan2, Xue Yinghao2, Xi Bin2, Sun Jianhong2, Peng Kewei1, Zhang Jie3, Jin Decai4,*

1. College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China 2. Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China 3. Huayuan Agricultural and Rural Bureau, Hunan Province, Xiangxi Tujia and Miao Autonomous Prefecture 416499, China 4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract:With the widespread application of mulch film in agriculture ecosystem, the pollution of phthalates (PAEs) cannot be ignored. In order to assess the pollution status of PAEs in the farmland soils that had long history of agricultural film mulching, the contents of 6 PAE compounds in 59 collected soil samples were measured by gas chromatography-mass spectrometry. The results showed that 5 PAE compounds were detected in 59 soil samples, while only DEP was not detected in all samples. The concentrations of ∑6PAEs ranged from 0.221 to 4.304 mg·kg-1, with an average concentration of 0.433 mg·kg-1. Among them, DEHP, DBP and BBP were the major PAEs pollutants in the soil. The detection rates of these three PAEs were 100%, and their average contents were 0.162, 0.134 and 0.101 mg·kg-1, respectively. Based on the control standards of priority pollutants of PAEs (US EPA), DBP content in 35.60% of all soil samples exceeded this control standard, implying that these soils had some pollution risks. Compared with soils in other agricultural regions, the pollution of PAEs in farmland soils with a long history of film mulching could be at the same level. Because these pollutants can be absorbed by crops, their agricultural product quality and safety risks require special attentions.

Keywords:phthalate esters; soils; pollution level; mulch film

收稿日期2021-11-30 录用日期:2022-02-16

基金项目国家自然科学基金资助项目(41977122);农业农村部农业生态环境保护专项(2110402);江苏省食品质量安全重点实验室开放课题(028074911709)

第一作者靳拓(1989—),男,博士,高级农艺师,研究方向为农业生态环境保护,E-mail: jintuo273@126.com

*通信作者(Corresponding author), E-mail: dcjin@rcees.ac.cn

DOI:10.7524/AJE.1673-5897.20211130002

靳拓, 许丹丹, 薛颖昊, 等. 我国59个长期覆膜样地的表层土壤中邻苯二甲酸酯污染状况分析[J]. 生态毒理学报,2022, 17(6): 462-471

Jin T, Xu D D, Xue Y H, et al. Analysis of phthalate esters pollution in 59 topsoils of long-term film mulching plots in China [J]. Asian Journal of Ecotoxicology, 2022, 17(6): 462-471 (in Chinese)

文章编号:1673-5897(2022)6-462-10

中图分类号:X171.5

文献标识码:A

Received 30 November 2021

accepted 16 February 2022

通信作者简介:金德才(1984—),男,博士,副研究员,主要研究方向为农田环境污染物的修复治理。