多溴联苯醚(polybrominated diphenyl ethers, PBDEs)是一类含溴芳香族化合物,共209种同系物,包括四溴(BDE-47)、五溴(BDE-99)、六溴(BDE-153)、八溴(BDE-183)和十溴联苯醚(BDE-209)等[1-2]。PBDEs与多氯联苯(PCB)结构类似,理论上可能有209种同系物,但目前在环境中只检测到40余种[3]。在电子产品、家具、纺织品以及建筑材料等领域,PBDEs常作为阻燃剂加入其中以提高产品的安全性。然而,在生产、加工或焚烧过程中,PBDEs未与材料聚合物共价键结合,极易从产品表面浸出并释放到环境中,从而造成广泛的污染,包括空气、水、土壤、沉积物,甚至是生物圈[4]。PBDEs最早于1979年在美国一家阻燃剂生产厂家附近的土壤中检出[5]。20世纪80年代,环境中PBDEs的污染问题逐渐引起科学家和环保组织的高度关注。1998年,Norén和Meironyté[6]在对瑞典母乳中检测发现,PBDEs含量在1972—1997年期间呈指数增长,同时加拿大的白鲸和美国旧金山的海豹脂肪组织中PBDEs浓度也在不断增加[7]。随后的监测数据显示,环境中PBDEs的暴露水平逐年升高,在各种生物体内的浓度也不断上升,在海洋哺乳动物、鱼类、鸟蛋、人乳、血清和脂肪组织中都发现了PBDEs残留[8-10]。深入研究发现,PBDEs呈现出生物富集性和毒性作用,能在环境中持久存在并长距离迁移,引发的环境和健康问题不容小觑[11]。可能导致内分泌紊乱,干扰血清激素水平[12],还会产生神经发育毒性,一些动物研究表明,产前产后接触PBDEs可能会导致子代的行为异常,特别是在运动和认知领域[13-14]。由此可见,工业品溴代阻燃剂PBDEs的广泛使用,不仅造成了环境压力,而且在陆生动物、水生生物、禽类及人体造成蓄积残留,给动物和人类健康带来巨大的威胁。
在动物体内,PBDEs极易富集残留,不仅干扰内分泌、引起神经毒性,还会损害生殖系统、导致胎儿畸形以及肝毒性等[15-17]。肝脏是机体最重要的代谢和解毒器官,不仅承担PBDEs等外源有毒有害物质的降解、消除,同时也是其蓄积残留和毒性攻击的靶标[17-18]。有研究指出,雌性小鼠灌胃或静脉给药后,脂肪组织中BDE-47的浓度最高,其次是肝、肺、肾和血液[18-19]。蛋鸡暴露BDE-209后,肝脏中BDE-209及其主要代谢物的含量最高[20]。来自贵屿和清远(中国电子垃圾拆解重镇)地区的鱼类等水产样品也检测出肝脏中PBDEs浓度最高[21-22]。一方面与PBDEs亲脂性有关,易在肝脏中选择性积聚,另一方面与肝脏在体内的解毒功能相关[22-23]。少量研究指出,在肝脏中PBDEs经代谢酶的介导下发生脱溴或羟基化反应,产生高毒性的低溴代或羟基化产物[17],高浓度的蓄积还会对肝脏产生不可逆的毒性作用。随着PBDEs产量和使用量的逐渐增加,人们对这些产品潜在的环境暴露及对人类造成的健康风险的担忧也在增加。然而,目前关于PBDEs的毒性主要集中在神经发育毒性、内分泌干扰毒性、免疫毒性和致癌效应等[7],有关肝脏毒性特别是详细的毒性机制研究报道匮乏。鉴此,本文基于已有材料对PBDEs的肝脏毒性研究予以概述,重点从PBDEs对在肝脏中的迁移、转化及代谢规律,以及肝脏损伤、氧化应激、凋亡、代谢酶、脂质代谢和糖代谢等诱导肝脏毒性机制等方面进行综述,旨在降低PBDEs对人类和其他生物潜在的健康威胁,对提出有效的防控措施具有重要意义。
PBDEs是一类含溴芳香族化合物,二苯醚分子含有10个氢原子,任何氢原子都可以与溴交换,从而产生209个可能的同系物,其分子式为C12H(0~9)Br(10~1)O,分子结构如图1所示。工业生产中,PBDEs通常以BDE-47、BDE-99、BDE-153、BDE-183和BDE-209等不同的溴化程度被添加到电子、纺织、塑料和建筑材料等产品中。目前,BDE-47、BDE-99、BDE-153和BDE-183在《斯德哥尔摩公约》中被优先加入了持久性有机污染物(persistent organic pollutants)的清单,后被完全淘汰。2017年,以BDE-209为主的产品也被列入该名单,但仍在中国及其他亚洲地区国家生产使用,造成严重的环境暴露和生态安全问题[24]。此外,这些持久的有机污染物将继续从废物中释放出来,直到2050年才能释放完[25]。研究发现,PBDEs溴化程度不同造成机体内半衰期的差异,高溴代化合物的半衰期较短,排泄快。如BDE-209在人体的残留时间只有几天,而其他常见的同系物BDE-47、BDE-99和BDE-100的残留时间可长达2~4年[26]。然而,高溴代PBDEs在生物体内可发生羟基化或甲氧基化反应,其中羟基化联苯醚(OH-PBDEs)和甲氧基化-多溴联苯醚(MeO-PBDEs)在人体血液和鱼类中被检出[27-28]。有研究指出,OH-PBDEs毒性可能更强,从而推断弱毒性的高溴代联苯醚也可能呈现高毒性的结果[29]。
图1 多溴联苯醚(PBDEs)的分子结构式
Fig. 1 Molecular structure of polybrominated diphenyl ethers (PBDEs)
目前,人类或其他动物接触PBDEs主要途径包括经口摄入、空气吸入和皮肤接触粉尘,其中经口摄入可能是人类和动物接触PBDEs的主要途径[30]。PBDEs一旦进入机体体内,会随血液进入肝脏,通过肝脏酶系统作用发生化学反应。工业PBDEs混合物和单个同源物能够诱导Ⅰ期和Ⅱ期酶,这些酶介导代谢。个别PBDEs同类物和PBDEs工业混合物被证明可诱导细胞色素P450酶(CYP450酶)。例如,在体外斑马鱼肝细胞系的研究中证实,BDE-99能通过芳香烃受体(AhR)介导的信号传导,从而诱导CYP1A酶[31]。Sanders等[32]调查了PBDEs混合物(DE-71)的各个组分对CYP1A1表达的影响,DE-71上调CYP1A1的表达,尽管响应较弱。此外,还能导致CYP2B和CYP3A在肝脏中表达增加。在白鲸微粒体中OH-BDE代谢物的形成取决于烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, NADPH),这是CYP催化反应所需的辅助因子[33]。在实验动物、家畜、野生动物和人类的体外/或体内PBDEs代谢已得到证实,PBDEs易受酶介导的代谢过程影响,如CYP酶介导的Ⅰ期氧化代谢、Ⅱ期发生结合反应,以及有限的还原性脱溴反应[34]。
氧化代谢主要指引入极性官能团如羟基、羧基等,使PBDEs更易溶于水,从而促进它们从体内排出;但有些物质的中间体或产物易与生物大分子如蛋白质、核酸等共价结合,导致“毒性增强”。有资料显示,持久性有机污染物PBDEs可通过CYP450酶转化为OH-PBDEs[29]。体外研究表明,OH-PBDEs是哺乳动物肝脏微粒体或肝细胞中PBDEs的主要代谢产物,在人类、大鼠或北极熊的肝微粒体中都发现BDE-47的主要代谢物4’-OH-BDE-49[34]。此外,OH-PBDEs被证明显著抑制人源肾上腺皮质癌细胞的芳香化酶活性,而PBDEs几乎没有影响,提示羟基化PBDEs的毒性可能要高于其原型[29]。除了PBDEs羟基化,在哺乳动物,水生动物和禽类体内还存在多种羟基化/脱溴、醚裂解/脱溴代谢途径。在鱼类还原性脱溴是PBDEs的主要生物转化途径,如鲤鱼、鲢鱼和鲫鱼,可以使BDE-85、BDE-99、BDE-183、BDE-196、BDE-197、BDE-203、BDE-206、BDE-207、BDE-208和BDE-209脱溴为低溴化同系物。其他动物如欧洲椋鸟中也报道BDE-209可通过间位脱溴为九溴联苯醚和八溴联苯醚[35-36]。然而,PBDEs在肝脏中的代谢结果取决于其化学结构。研究表明,BDE-99是代谢最多的PBDEs同系物,代谢转化程度要高于BDE-47、BDE-153或BDE-209。雄性Sprague-Dawley大鼠口服BDE-47的吸收率很高,但代谢缓慢,在第5天只有14%和0.5%的BDE-47通过粪便和尿液排出。BDE-153在灌胃后被大鼠或小鼠吸收约70%,蓄积在组织中,代谢不良,排泄缓慢。虽然BDE-209的生物积累看起来很低,但代谢广泛,在大鼠中单剂量生物转化高达70%[34]。
由此可见,不同结构的PBDEs在不同物种之间的代谢情况复杂,不仅能转化为OH-BDEs,还会发生脱溴反应。然而,大部分研究表明代谢产生的OH-BDE数量极少。Erratico等[37]报道,代谢物(4-OH-BDE-99、5’-OH-BDE-99和6’-OH-BDE-99)与暴露的BDE-99之间的浓度比分别约为0.056%、0.043%和0.01%。当BDE-47与大鼠身上分离的微粒体一起孵育时,2’-OH-BDE-66、3-OH-BDE-47、4-OH-BDE-42、4’-OH-BDE-49、5-OH-BDE-47和6-OH-BDE-47分别占母体BDE-47的0.30%、0.84%、0.10%、0.54%、0.074%和0.022%。这些结果提示,PBDEs的代谢产物毒性可能较原型要强,但其真正的危害还有待进一步的研究。
近年来,已有许多关于PBDEs肝毒性的研究报告,但不同PBDEs同系物之间的研究结果存在一定差异。肝脏是PBDEs蓄积和暴露的主要靶器官,肝损伤与PBDEs的暴露剂量和方式紧密相关。首先,PBDEs会引起肝脏的脏器系数变化,在持续91 d剂量>5 mg·kg-1·d-1的情况下,暴露于DE-71的大鼠中观察到肝脏质量增加[38]。给予大鼠剂量为500 mg·kg-1·d-1的BDE209持续28 d,能显著增加肝脏质量和器官系数[39]。血清谷草转氨酶(glutamic oxalacetic transaminase, GOT)、谷丙转氨酶(glutamic-pyruvic transaminase, GPT)和碱性磷酸酶(alkaline phosphatase, ALP)等生化指标被认为是肝脏毒性作用的敏感标志物,有研究指出暴露于1.2 mg·kg-1的BDE-99能使雄性大鼠血液中GOT、GPT和ALP等酶活性显著增加[40]。中、高剂量BDE-209(50 mg·kg-1·d-1、500 mg·kg-1·d-1)下的大鼠的导致谷氨酰转肽酶(glutamyl transpeptidase, GGT)增加[41]。另外,PBDEs还会引起严重的病理组织学变化,暴露于DE-71,15~90 d剂量>0.45 mg·kg-1·d-1大鼠中,均一致观察到肝脏的组织病理学效应(肝细胞肥大、坏死和空泡化)[30]。口服200 mg·kg-1·d-1和500 mg·kg-1·d-1的BDE-209 6周后,小鼠肝脏出现肝细胞浊肿,胞浆内有细小脂质空泡,肝索排列混乱,部分肝细胞模糊;电镜下小鼠肝脏出现染色质浓缩聚合,线粒体膨胀,内质网增大[41]。此外,染毒50 mg·kg-1·d-1和500 mg·kg-1·d-1的BDE-209,小鼠出现肝小叶结构不良,肝索肝窦紊乱以及球状样水肿肝细胞,伴有羽毛状坏死,其中细胞质呈疏松透明状态,细胞核消失,在门静脉浸润周围积聚炎性细胞[39]。这些血液生化指标的异常和形态组织结构的改变都预示着,PBDEs暴露后肝脏发生了损伤。
PBDEs引起动物或人肝脏毒性的机制复杂,还未有完整的毒理学理论,目前研究认为可能存在以下4个因素。
3.2.1 氧化应激诱导的肝脏损伤
肝脏是机体的代谢中心,其旺盛的代谢活动必然会伴随活性氧(reactive oxygen species, ROS)的大量生成,ROS的过量产生或抗氧化防御机能的不足将导致氧化应激。资料显示,PBDEs诱导肝脏损伤的作用机制可能是通过产生大量活性氧簇或抑制抗氧化酶活性,引起脂质过氧化反应,产生大量丙二醛(malondialdehyde, MDA)并在组织细胞内富集,最终导致肝细胞肿胀、坏死[42]。体外研究表明,HepG2细胞暴露于BDE-47 24 h,细胞内产生的ROS明显增高[43]。与BDE-47相比,羟基化产物(6-OH-BDE-47、5-OH-BDE-47、2-OH-BDE-28和4-OH-BDE-17)和溴化苯酚产物(2,4-DBP和4-BP)对细胞活力的影响更大。且低浓度2 μmol·L-1 BDE-47及脱溴产物诱导ROS的形成,还可以同时激活超氧化物歧化酶(superoxide dismutase, SOD)活性和还原型谷胱甘肽(glutathione, GSH)含量,当暴露于50 μmol·L-1浓度时,SOD活性和GSH含量迅速下降[44]。在水生动物体内也出现了相似的情况,BDE-47和BDE-209分别作用于鲫鱼肝脏组织,发现BDE-47和BDE-209的浓度大于0.56 mg·L-1和10.00 mg·L-1后,肝脏中的过氧化氢酶(catalase, CAT)和GSH-Px活性均会发生明显的下降[45]。体内研究表明,小鼠暴露BDE-209后不仅能增加过氧化氢的生成,还能抑制GSH的保护作用,在肝脏组织中引起氧化应激,诱导MDA的大量产生[46]。中高剂量50 mg·kg-1·d-1和500 mg·kg-1·d-1 BDE-209暴露显著降低SOD活性[41]。总之可见,PBDEs通过不同方式染毒后,可以引起肝脏或肝细胞ROS含量增加,一定浓度下抑制抗氧化酶SOD等活性,诱导肝脏氧化应激的发生,这可能是诱导肝脏损伤的重要机制之一。
3.2.2 酶诱导的肝脏损伤
肝脏作为体内代谢的主要器官,细胞色素P450(CYP450)酶系是参与外源性和内源性物质代谢的最重要酶之一,尤其以各种异源生物的Ⅰ期代谢而著称[47]。CYP3A是CYP450酶家族的成员,该酶在肝脏中表达量高,并且在许多物质的首过和全身代谢中发挥重要作用。除此之外,CYP1A是CYP450酶家族除CYP3A外最为重要的代谢酶,该酶可代谢某些芳香族和氯代烃,同时诱导芳烃受体(aromatic hydrocarbons receptor, AhR)表达。CYP1A1是其中的一个亚型,它能够代谢多环芳烃类外源有毒有害化合物。AhR可以调控CYP1A1基因的表达[48]。有研究指出,BDE-209暴露后大鼠肝脏中CYP3A、PXRCAR的表达水平下调,其中孕烷X受体(pregnane X receptor, PXR)和雄甾烷受体(constitutive androsterane receptor, CAR)是核受体,控制CYP3A酶的表达[49]。环境中不仅广泛存在PBDEs,还有许多与之结构相似的芳香族化合物(halogenated aromatic compound, HAC),如多氯联苯和多溴联苯等,都具有很强肝毒性[50]。目前,有研究对PBDEs的毒理学特征提出假设,根据结构相似原理可知,多溴二苯醚也可能激活AhR信号转导途径[51],AhR激活从而促进CYP1A1、IL-2和NF-κB等基因表达,进而诱导肝脏毒性。Blanco等[52]观察到妊娠期暴露于BDE-99后,上调了胎鼠肝脏中CYP1A、CYP2B和CYP3A的mRNA表达。但目前关于溴代阻燃剂是否激活或者抑制AhR的活性仍然存在很大的争议。研究结果差异较大,可能与PBDE同系物、物种、暴露方式等诸多因素有关。在原代肝细胞和肝细胞系中研究证实,大多数PBDEs缺乏AhR的激活,可能是因为它们缺乏平面状结构[53]。BDE-47对AhR几乎没有激活的效果,但在大鼠肝癌细胞中它的代谢产物6-OH-BDE-47、5-Cl-6-MeO-BDE-47的确能够激活AhR产生细胞毒性[54]。证明这些催化过程可能导致有毒的、持久的代谢产物形成。因此,PBDEs通过这些酶形成的生物转化可能是暴露毒性的一种过程,也预示着PBDEs可能通过肝酶的代谢诱导肝脏损伤。
3.2.3 糖和脂肪代谢途径异常引起肝脏损伤
肝脏是脂肪合成、糖异生以及胆固醇代谢的主要场所,是机体维持脂质、蛋白质和葡萄糖稳态的重要器官。肝脏损伤和糖脂代谢密切相关。当肝细胞中脂质代谢功能发生异常,会出现大量脂肪聚积,高血脂和胰岛素抵抗,有时会发生脂肪变性[55]。在子宫内和哺乳期接触BDE-47会导致高脂饮食(high fat diet, HFD)诱导的肥胖、肝脂肪变性和损伤恶化[56],围产期小鼠暴露BDE-47后,肝脏和血液中的甘油三酯双倍增加,肝脏代谢异常[57]。此外,流行病学调查显示,PBDEs暴露已成为2型糖尿病的潜在原因[58]。在孕早期母体血清中测量了BDE-153、BDE-154和BDE-183,发现与空腹血糖(fasting blood glucose, FBG)成正相关(P<0.05)。此外,BDE-153和BD-154分别与餐后2 h血糖(postprandial blood glucose, PBG)增加6.41%和3.59%相关。这些发现表明PBDEs会扰乱葡萄糖稳态[59]。类似地,大西洋鲑鱼中PBDEs同源物BDE-47、BDE-153和BDE-154的肝脏体外毒性评估显示出与血糖控制途径相关的代谢紊乱[60]。然而,PBDEs暴露与糖脂代谢及肝脏损伤之间关联的确切生物学机制尚未阐明。这些研究表明,机体内的糖脂代谢处于动态平衡,当平衡被打破,就会影响正常的生理调节,肝脏会影响糖脂代谢,反过来的代谢紊乱会加重肝脏损伤。
3.2.4 细胞凋亡诱导肝脏损伤
细胞凋亡(apoptosis)是机体正常细胞遭受到生理和病理性刺激后出现的一种自发性死亡过程。细胞凋亡主要由2条信号通路转导激活,即内源性线粒体通路和外源性死亡受体通路。目前关于PBDEs肝毒性的研究大都从线粒体途径入手,在Pereira等[61]的研究中,暴露于BDE-209下的大鼠通过内源性通路导致细胞凋亡,从而造成肝脏损伤,伴有caspase 9和caspase 3通路激活。此外,溴化程度较低的同系物,如BDE-99、BDE-100和BDE-154也能通过损害线粒体功能而诱导细胞凋亡,BDE-99孵育10~25 μmol·L-1 24 h和0.5~25 μmol·L-1 48 h后观察到线粒体膜电位降低。线粒体膜电位的这种降低可能是由于线粒体通透性转换孔的打开而发生的,这会释放诸如细胞色素c之类的蛋白质,从而触发细胞凋亡途径。BDE-100与线粒体内膜的亲水部分相互作用诱导线粒体肿胀,从而导致线粒体膜电位的耗散和线粒体钙外流的刺激。这些影响降低了线粒体ATP含量[62-64]。但关于外源性通路造成细胞凋亡的报道寥寥无几。综上所述,PBDEs可通过内源性途径造成肝损伤,这些研究从分子层面揭示了细胞凋亡介导的肝损伤机制,同时也为外源性途径诱导的肝脏损伤研究提供了新思路。
目前,随着对PBDEs在机体中的残留代谢和对肝脏毒性研究的逐渐深入,人们认识到被用作阻燃剂添加于建筑材料及商业产品中的PBDEs和其产生的代谢产物对肝脏有着持久长期的损害。肝脏不仅有PBDEs的母体化合物残留,还通过细胞色素酶代谢产生低溴代产物和羟基化PBDEs。这种代谢产物毒性远高于其母体化合物。目前,关于PBDEs引起的肝脏毒性报道越来越多,系统的论述起来PBDEs对肝脏的损害主要由脂质的过氧化反应、肝细胞的过度凋亡、肝药酶活性的改变、脂肪与糖代谢的异常4个方面引起。除此之外,还有一些新的问题和领域有待突破:(1)探索PBDEs及其代谢产物肝脏毒性的关键生物标志物、作用信号通路及调控机制等;(2)现存的肝脏毒性研究主要集中于肝细胞和实验动物,一些食物链动物作为PBDEs的传递载体,是否也存在相应的生物放大作用,毒性效应亟待系统的研究;(3)PBDEs种类繁多,目前肝脏毒性效应研究常见于单一毒性,联合毒性研究缺乏,特别是PBDEs在生物体内还存在脱溴和羟基化代谢,多种PBDEs原型联合或与其代谢物联合的互作效应、分子机制等有待进一步探索;(4)尽管在过去10年中,PBDEs的使用受到限制,但PBDEs在废料中长期存在且持续排放出现“时间滞后”现象,因此我们不能放松警惕,应采取进一步措施从废物流中有效转移PBDEs,进而降低PBDEs对环境和人类健康的潜在长期风险。因此,这些研究不仅为全面解析PBDEs肝脏毒性作用机制提供参考,也为准确评估PBDEs的残留风险、提出关键有效的防控措施提供理论支持。
[1] 郭楠楠, 孟顺龙, 陈家长. 多溴联苯醚在环境中的残留及毒理学效应研究进展[J]. 中国农学通报, 2019, 35(25): 159-164
Guo N N, Meng S L, Chen J Z. Polybrominated biphenyl ethers: Residual in the environment and research progress on toxicological effects [J]. Chinese Agricultural Science Bulletin, 2019, 35(25): 159-164 (in Chinese)
[2] Alaee M, Arias P, Sjödin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release [J]. Environment International, 2003, 29(6): 683-689
[3] Ross P S, Couillard C M, Ikonomou M G, et al. Large and growing environmental reservoirs of Deca-BDE present an emerging health risk for fish and marine mammals [J]. Marine Pollution Bulletin, 2009, 58(1): 7-10
[4] Wu Z N, He C, Han W, et al. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review [J]. Environmental Research, 2020, 187: 109531
[5] DeCarlo V J. Studies on brominated chemicals in the environment [J]. Annals of the New York Academy of Sciences, 1979, 320(1 Health Effect): 678-681
[6] Norén K, Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years [J]. Chemosphere, 2000, 40(9-11): 1111-1123
[7] McDonald T A. A perspective on the potential health risks of PBDEs [J]. Chemosphere, 2002, 46(5): 745-755
[8] de Boer J, Wester P G, van der Horst A, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands [J]. Environmental Pollution, 2003, 122(1): 63-74
[9] Sellström U, de Wit C A, Lundgren N, et al. Effect of sewage-sludge application on concentrations of higher-brominated diphenyl ethers in soils and earthworms [J]. Environmental Science & Technology, 2005, 39(23): 9064-9070
[10] Muir D C G, Backus S, Derocher A E, et al. Brominated flame retardants in polar bears (Ursus maritimus) from Alaska, the Canadian Arctic, East Greenland, and Svalbard [J]. Environmental Science & Technology, 2006, 40(2): 449-455
[11] 张娴, 高亚杰, 颜昌宙. 多溴联苯醚在环境中迁移转化的研究进展[J]. 生态环境学报, 2009, 18(2): 761-770
Zhang X, Gao Y J, Yan C Z. Advance in researches on the transport and transformation of polybrominated diphenyl ethers in environment [J]. Ecology and Environmental Sciences, 2009, 18(2): 761-770 (in Chinese)
[12] Johnson P I, Stapleton H M, Mukherjee B, et al. Associations between brominated flame retardants in house dust and hormone levels in men [J]. The Science of the Total Environment, 2013, 445-446: 177-184
[13] Costa L G, de Laat R, Tagliaferri S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity [J]. Toxicology Letters, 2014, 230(2): 282-294
[14] Cao L Y, Zheng Z Y, Ren X M, et al. Structure-dependent activity of polybrominated diphenyl ethers and their hydroxylated metabolites on estrogen related receptor γ: in vitro and in silico study [J]. Environmental Science & Technology, 2018, 52(15): 8894-8902
[15] Kuriyama S N, Wanner A, Fidalgo-Neto A A, et al. Developmental exposure to low-dose PBDE-99: Tissue distribution and thyroid hormone levels [J]. Toxicology, 2007, 242(1-3): 80-90
[16] Herbstman J B, Sjödin A, Kurzon M, et al. Prenatal exposure to PBDEs and neurodevelopment [J]. Environmental Health Perspectives, 2010, 118(5): 712-719
[17] Stapleton H M, Kelly S M, Pei R T, et al. Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro [J]. Environmental Health Perspectives, 2009, 117(2): 197-202
[18] Sanders J M, Chen L J, Lebetkin E H, et al. Metabolism and disposition of 2,2’,4,4’- tetrabromodiphenyl ether following administration of single or multiple doses to rats and mice [J]. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 2006, 36(1): 103-117
[19] Staskal D F, Diliberto J J, Birnbaum L S. Impact of repeated exposure on the toxicokinetics of BDE 47 in mice [J]. Toxicological Sciences, 2005, 89(2): 380-385
[20] Wang J X, Bao L J, Luo P, et al. Intake, distribution, and metabolism of decabromodiphenyl ether and its main metabolites in chickens and implications for human dietary exposure [J]. Environmental Pollution, 2017, 231(Pt 1): 795-801
[21] Luo Q, Cai Z W, Wong M H. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste [J]. Science of the Total Environment, 2007, 383(1-3): 115-127
[22] Xian Q M, Ramu K, Isobe T, et al. Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China [J]. Chemosphere, 2008, 71(2): 268-276
[23] Erratico C A, Szeitz A, Bandiera S M. Biotransformation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: Identification of cytochrome P450 2B6 as the major enzyme involved [J]. Chemical Research in Toxicology, 2013, 26(5): 721-731
[24] Li J H, Chen Y, Xiao W J. Polybrominated diphenyl ethers in articles: A review of its applications and legislation [J]. Environmental Science and Pollution Research International, 2017, 24(5): 4312-4321
[25] Abbasi G, Li L, Breivik K. Global historical stocks and emissions of PBDEs [J]. Environmental Science & Technology, 2019, 53(11): 6330-6340
[26] Geyer H J, Schramm K W, Per O, et al. Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans [C]. Berlin (Germany): U.S. Department of Energy Office of Scientific and Technical Information, 2004: 3820-3825
[27] Zota A R, Mitro S D, Robinson J F, et al. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression [J]. Environment International, 2018, 112: 269-278
[28] Sinkkonen S, Rantalainen A L, Paasivirta J, et al. Polybrominated methoxy diphenyl ethers (MeO-PBDEs) in fish and guillemot of Baltic, Atlantic and Arctic environments [J]. Chemosphere, 2004, 56(8): 767-775
[29] Cantón R F, Scholten D E A, Marsh G, et al. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs) [J]. Toxicology and Applied Pharmacology, 2008, 227(1): 68-75
[30] Pohl H R, Odin M, McClure P R, et al. Toxicological profile for polybrominated diphenyl ethers (PBDEs) [R]. Washington DC: U.S. Department of Health and Human Services, 2017: 43-297
[31] Yang J, Zhu J Y, Chan K M. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells [J]. Toxicology and Applied Pharmacology, 2016, 305: 203-215
[32] Sanders J M, Burka L T, Smith C S, et al. Differential expression of CYP1A, 2B, and 3A genes in the F344 rat following exposure to a polybrominated diphenyl ether mixture or individual components [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2005, 88(1): 127-133
[33] McKinney M A, De Guise S, Martineau D, et al. Biotransformation of polybrominated diphenyl ethers and polychlorinated biphenyls in Beluga whale (Delphinapterus leucas) and rat mammalian model using an in vitro hepatic microsomal assay [J]. Aquatic Toxicology, 2006, 77(1): 87-97
[34] Hakk H, Letcher R J. Metabolism in the toxicokinetics and fate of brominated flame retardants: A review [J]. Environment International, 2003, 29(6): 801-828
[35] Luo Y L, Luo X J, Ye M X, et al. Species-specific and structure-dependent debromination of polybrominated diphenyl ether in fish by in vitro hepatic metabolism [J]. Environmental Toxicology and Chemistry, 2017, 36(8): 2005-2011
[36] van den Steen E, Covaci A, Jaspers V L, et al. Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris) [J]. Environmental Pollution, 2007, 148(2): 648-653
[37] Erratico C A, Moffatt S C, Bandiera S M. Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes [J]. Toxicological Sciences, 2011, 123(1): 37-47
[38] Dunnick J K, Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers [J]. Experimental and Toxicologic Pathology, 2009, 61(1): 1-12
[39] Sun Y M, Wang Y W, Liang B L, et al. Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats [J]. Science of the Total Environment, 2020, 705: 135783
[40] Alonso V, Linares V, Bellés M, et al. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats [J]. Food and Chemical Toxicology, 2010, 48(8-9): 2206-2211
[41] 王兴华. 十溴联苯醚对小鼠肝脏组织的氧化应激水平及细胞色素C表达水平影响的研究[D]. 合肥: 安徽医科大学, 2012: 49-53
Wang X H. Study on the effects of decabromodiphenylether on oxidative stress and the expression of cytochrome C in mice liver [D]. Hefei: Anhui Medical University, 2012: 49-53 (in Chinese)
[42] Mottaran E, Stewart S F, Rolla R, et al. Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease [J]. Free Radical Biology & Medicine, 2002, 32(1): 38-45
[43] Wang L L, Zou W, Zhong Y F, et al. The hormesis effect of BDE-47 in HepG2 cells and the potential molecular mechanism [J]. Toxicology Letters, 2012, 209(2): 193-201
[44] Tang S Y, Liu H, Yin H, et al. Effect of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) and its metabolites on cell viability, oxidative stress, and apoptosis of HepG2 [J]. Chemosphere, 2018, 193: 978-988
[45] 吴伟, 聂凤琴, 瞿建宏. 多溴联苯醚对鲫鱼离体肝脏组织中CAT和GSH-Px的影响[J]. 生态环境学报, 2009, 18(2): 408-413
Wu W, Nie F Q, Qu J H. The in vitro effects of tetrabromodiphenyl ether and decabromodiphenyl ether on the activities of catalase and glutathione peroxidase in the liver of Carassius auratus [J]. Ecology and Environmental Sciences, 2009, 18(2): 408-413 (in Chinese)
[46] Zhao A J, Liu H Q, Zhang A N, et al. Effect of BDE-209 on glutathione system in Carassius auratus [J]. Environmental Toxicology and Pharmacology, 2011, 32(1): 35-39
[47] Wang Y H, Wu S S, Chen Z C, et al. Inhibitory effects of cytochrome P450 enzymes CYP1A2, CYP2A6, CYP2E1 and CYP3A4 by extracts and alkaloids of Gelsemium elegans roots [J]. Journal of Ethnopharmacology, 2015, 166: 66-73
[48] Delescluse C, Lemaire G, de Sousa G, et al. Is CYP1A1 induction always related to AHR signaling pathway? [J]. Toxicology, 2000, 153(1-3): 73-82
[49] Gabbia D, Pozza A D, Albertoni L, et al. Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis [J]. World Journal of Gastroenterology, 2017, 23(42): 7519-7530
[50] Chen G, Konstantinov A D, Chittim B G, et al. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway [J]. Environmental Science & Technology, 2001, 35(18): 3749-3756
[51] 魏爱雪, 王学彤, 徐晓白. 环境中多溴联苯醚类(PBDEs)化合物污染研究[J]. 化学进展, 2006, 18(9): 1227-1233
Wei A X, Wang X T, Xu X B. The pollution research aspect on poly-brominated diphenyl esters (PBDEs) compounds in environment [J]. Progress in Chemistry, 2006, 18(9): 1227-1233 (in Chinese)
[52] Blanco J, Mulero M, Domingo J L, et al. Gestational exposure to BDE-99 produces toxicity through upregulation of CYP isoforms and ROS production in the fetal rat liver [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2012, 127(1): 296-302
[53] Wahl M, Guenther R, Yang L, et al. Polybrominated diphenyl ethers and arylhydrocarbon receptor agonists: Different toxicity and target gene expression [J]. Toxicology Letters, 2010, 198(2): 119-126
[54] Su G Y, Xia J, Liu H L, et al. Dioxin-like potency of HO- and MeO- analogues of PBDEs’ the potential risk through consumption of fish from Eastern China [J]. Environmental Science & Technology, 2012, 46(19): 10781-10788
[55] Wang X L, Lu Y, Wang E, et al. Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer partner [J]. Journal of Hepatology, 2015, 63(1): 183-190
[56] Wang D Z, Yan J, Teng M M, et al. In utero and lactational exposure to BDE-47 promotes obesity development in mouse offspring fed a high-fat diet: Impaired lipid metabolism and intestinal dysbiosis [J]. Archives of Toxicology, 2018, 92(5): 1847-1860
[57] Khalil A, Parker M, Mpanga R, et al. Developmental exposure to 2,2’,4,4’-tetrabromodiphenyl ether induces long-lasting changes in liver metabolism in male mice [J]. Journal of the Endocrine Society, 2017, 1(4): 323-344
[58] Taylor K W, Novak R F, Anderson H A, et al. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review [J]. Environmental Health Perspectives, 2013, 121(7): 774-783
[59] Liu X, Zhang L, Li J G, et al. A nested case-control study of the association between exposure to polybrominated diphenyl ethers and the risk of gestational diabetes mellitus [J]. Environment International, 2018, 119: 232-238
[60] Søfteland L, Petersen K, Stavrum A K, et al. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.) [J]. Aquatic Toxicology, 2011, 105(3-4): 246-263
[61] Pereira L C, Souza A O, Tasso M J, et al. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death [J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(19-21): 1129-1144
[62] Pereira L C, de Souza A O, Dorta D J. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment [J]. Basic & Clinical Pharmacology & Toxicology, 2013, 112(6): 418-424
[63] Souza A O, Pereira L C, Oliveira D P, et al. BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line - HepG2 [J]. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 2013, 27(2): 580-587
[64] Yan C, Huang D J, Zhang Y M. The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells [J]. Experimental and Toxicologic Pathology, 2011, 63(5): 413-417
Corresponding author), E-mail: yangjunhua303@126.com
# 共同通讯作者(Co-corresponding author), E-mail: zhuxing72@126.com