

DOI: 10.7524/AJE.1673-5897.20211007001

李清雪, 董天羽, 孙王茹, 等. 典型北方城市河流中抗生素污染特征及风险评价[J]. 生态毒理学报,2022, 17(4): 213-229 Li Q X, Dong T Y, Sun W R, et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers [J]. Asian Journal of Ecotoxicology, 2022, 17(4): 213-229 (in Chinese)

典型北方城市河流中抗生素污染特征及风险评价

李清雪^{1,*},董天羽¹,孙王茹¹,刘含雨²,武丽娜¹,汪庆^{1,#}

河北工程大学能源与环境工程学院,邯郸 056038
 河北中洲水务投资股份有限公司,保定 071000
 收稿日期:2021-10-07
 录用日期:2021-12-27

摘要:本研究对北方某市2条河流中磺胺类、喹诺酮类和β-内酰胺类的10种典型抗生素进行了污染特征分析和生态风险评估。结果表明,滏阳河与沁河水中分别检出8种和7种抗生素,浓度范围为ND~205 ng·L⁻¹和ND~152 ng·L⁻¹,检出率与平均含量最高的为磺胺类,其次为喹诺酮类β-内酰胺类;沉积物中分别检出7种和6种抗生素,检出浓度范围分别为ND~57.0 ng·g⁻¹和ND~36.6 ng·g⁻¹。检出率最高的为喹诺酮类的环丙沙星、诺氟沙星,磺胺类居中,洛美沙星检出率最低,氟罗沙星仅在滏阳河中检出。β-内酰胺类3种抗生素未在沉积物中检出;抗生素在时空分布上呈现冬季高于夏季、滏阳河高于沁河、出市断面高于入市断面的特征。与南方地区相比北方河流中磺胺类和喹诺酮类抗生素含量较高。通过物种敏感度分布(SSD)法得到的风险评估结果低于传统的单一物种风险评估法,但2种评估结果均表明洛美沙星存在较高的生态风险,有关北方地区城市河流中抗生素污染问题应得到重视。

关键词:抗生素;北方城市河流;污染特征;风险评价 文章编号:1673-5897(2022)4-213-17 中图分类号:X171.5 文献标识码:A

Pollution Characteristics and Risk Assessment of Antibiotics in Typical Northern Urban Rivers

Li Qingxue^{1,*}, Dong Tianyu¹, Sun Wangru¹, Liu Hanyu², Wu Lina¹, Wang Qing^{1,#} 1. School of Energy and Environment, Hebei University of Engineering, Handan 056038, China 2. Hebei Zhongzhou Water Investment Co. Ltd., Baoding 071000, China **Received** 7 October 2021 accepted 27 December 2021

Abstract: In this present study, 10 typical antibiotics in two rivers in a northern city were analyzed to obtain the pollution characteristics and ecological risk assessment, including sulfonamides, quinolones and β -lactam antibiotics. The results revealed that 8 kinds of antibiotics and 7 kinds of antibiotics were detected in Fuyang River and Qin River, respectively, with the concentration range of ND ~ 205 ng·L⁻¹ and ND ~ 152 ng·L⁻¹, respectively. The detection rate and average content of sulfonamide antibiotics were the highest, followed by quinolones and β -lactams. A total of 7 and 6 antibiotics were detected in sediments, with the detection concentration range of ND ~ 57.0 ng·

基金项目:国家自然科学基金资助项目(42077393);河北省重点研发计划项目(19273707D)

第一作者:李清雪(1964—),女,博士,教授,研究方向为新型污染物环境污染分析及风险评价, E-mail: liqingxue_610@126.com

^{*} 通讯作者(Corresponding author), E-mail: liqingxue_610@ 126.com

[#] 共同通讯作者(Co-corresponding author), E-mail: wangqing@hebeu.edu.cn

 g^{-1} and ND ~ 36.6 ng $\cdot g^{-1}$. The quinolone ciprofloxacin and norfloxacin had the highest detection rate, the sulfonamides were in the middle, and lomefloxacin had the lowest detection rate. Fleroxacin was only detected in Fuyang River. The three types of β -lactam antibiotics were not detected in the sediments. The temporal and spatial distribution of antibiotics was higher in winter than that in summer. Fuyang River was higher than Qin River, and the exit section was higher than the entry section. The contents of sulfonamides and quinolone antibiotics in northern rivers were higher than that in southern regions. The risk assessment results obtained by the species sensitivity distribution method were lower than that obtained by the traditional single species risk assessment method. However, both assessments indicated that lomefloxacin had a higher ecological risk. Most importantly, the issues of antibiotic pollution in urban rivers in northern regions should be given more attention.

Keywords: antibiotics; urban rivers in the north; pollution characteristics; risk assessment

目前抗生素污染已经成为全球关注的环境问题^[1-6]。海洋^[7]、湖泊^[8-9]、地下水^[10]和土壤^[11]等环境中均有抗生素检出。城市河流作为受人类活动影响最大的水体,抗生素在其中广泛存在。巴西的库里蒂巴^[1],中国的贵阳^[12]、重庆^[13]和上海^[14]等多个城市河流中均检测到抗生素残留,虽然浓度大多为"ng·L⁻¹"级别,但抗生素的化学稳定性和生物毒性决定了低浓度的抗生素也会对水生生物甚至整个水生态环境带来严重影响^[15-16]。研究表明,阿根廷科尔多瓦市的苏基亚河、我国的珠江、长江等河流均存在抗生素的生态高风险^[26]。

目前有关中国城市水环境抗生素的研究中主要 集中在南方地区。北方地区人口密集,作为我国重 要的医药加工和制造基地,拥有中国医药、哈尔滨制 药、华北制药和石家庄制药等多个大型制药企 业^[17-18]。已有研究发现华北地区的子牙河、滏阳河 和永定河农村周边水环境中存在抗生素残留^[19],但 有关城市河流中抗生素污染的研究相对匮乏。因 此本研究以北方地区的2条城市河流为研究对 象,对磺胺类、喹诺酮类和β-内酰胺类等10种典 型抗生素的污染特征进行探究,并采用风险商值 法对水中的抗生素进行生态风险评估。以期为北方 城市河流抗生素污染的防治及相关研究提供科学依 据和参考。

1 材料与方法(Materials and methods)

1.1 主要试剂

Na₂EDTA(分析纯,天津欧博凯);甲酸、甲醇和乙腈均为色谱纯,购自德国 Merck;磺胺嘧啶(SDZ, 纯度 99.7%)、甲氧苄啶(TMP,纯度 99.8%)、磺胺甲恶唑(SMX, 纯度 99.6%)、头孢克洛(CFC, 纯度 94.4%)、头孢克肟(CFM, 纯度 89.2%)、头孢唑林

(CZO, 纯度 99%)、诺氟沙星(NOR, 纯度 99.5%)、环 丙沙星(CIP, 纯度 84.2%)、洛美沙星(LOM, 纯度 90.4%)和氟罗沙星(FO, 纯度 99.2%)标准样品均购 自(中国)药品生物制品研究所。

1.2 样品采集

分别在 2018 年 8 月和 12 月,对邯郸市滏阳河 和沁河的水样及沉积物进行采集。从滏阳河进入邯 郸城区断面(张庄桥)至出城区断面(苏里)依次设置 9 个采样点,F1~F9。沁河从上游到下游依次设置 6 个采样点,分别为 Q1~Q6。沁河在 F7 点前汇入滏 阳河。采样点具体位置如图 1 所示。

用采水器采集 2 L 距河面 0 ~ 50 cm 的表层水 样,保存在棕色试剂瓶中。用抓斗式采泥器采集 100 g 表层沉积物,锡箔纸包裹并用密封袋塑封。 将样品于4 ℃冷藏运回实验室并于 24 h 内完成预 处理。

1.3 样品前处理

水样:取 500 mL 水样过 0.45 μ m 滤膜后加入 0.5 g Na₂EDTA,用 4 mol·L⁻¹的盐酸调节其 pH=3 左右。以 5~10 mL·min⁻¹的流速将水样通过预先 用 5 mL 甲醇、5 mL 0.1% 的甲酸水活化好的 Oasis HLB 小柱(500 mg×6 mL, Waters 公司)。待水样富 集完成后用 6 mL 5% 甲醇水淋洗吸附柱,真空干燥 30 min。待吸附柱完全干燥,将 6 mL 甲醇分 3 次通 过吸附柱进行洗脱。洗脱液经氮吹干燥后加入 1 mL HPLC 初始流动相(V(1% 甲酸水): V(甲醇): V(乙腈)=8:1:1)溶解底物,溶液过 0.45 μ m 有机相针 式过滤器移入样品瓶进行 HPLC 分析^[20]。

沉积物:沉积物样在-20℃的环境中预冷冻,冷 冻完成的样品转入冷冻干燥机中-80℃冷冻干燥 24 h。待样品完全干燥后将其研磨,过100 目筛去 除杂质。准确称取2g沉积物干粉于25 mL 离心管 中,加入10 mL 甲醇,涡旋5 min,超声10 min,4 000 r·min⁻¹离心5 min,收集上清液。如此重复提取3 次并混合上清液至500 mL 棕色容量瓶中,加入蒸 馏水定容。定容完成的提取液经0.45 μm 微孔滤膜 抽滤去除杂质,加入0.5 g Na₂EDTA,盐酸调节 pH= 3 左右,参照水样中抗生素检测方法进行固相萃取 和 HPLC 分析。

1.4 仪器分析条件

参考文献[20]采用高效液相色谱仪(岛津 LC-2030)对样品进行分析检测。色谱条件为: Shimpack GIST C18 色谱柱(250 mm×4.6 mm, 5 μm),柱 温 40 ℃,流速 0.8 mL·min⁻¹,进样量 30 μL,检测波 长 270 nm,梯度洗脱步骤如表 1 所示。

1.5 质量控制

采用外标法对样品进行定量分析。用甲醇配制 10种抗生素的混标储备液,每种抗生素浓度为0.1 $mg \cdot L^{-1}$ 。将混标溶液逐级稀释为1.0、0.8、0.6、0.5、 0.4、0.2、0.1和0.05 $\mu g \cdot L^{-1}$ 浓度梯度的混标使用液, 10种目标抗生素的标准曲线相关系数均>0.99;在2 个样品中分别添加0.1、0.5和1 $\mu g \cdot L^{-1}$ 3个浓度水 平的目标抗生素混标使用液进行加标回收,加标回 收率在78.6%~101.5%之间。

图1 采样点位示意图

Fig. 1 Schematic diagram of sampling points

Table 1Gradient elution steps									
时间/min	流动相 A/%	流动相 B/%	流动相 C/%						
Time/min	Mobile phase A/%	Mobile phase B/%	Mobile phase C/%						
0	80	10	10						
6	65	25	10						
8	60	30	10						
9	50	40	10						
10	50	40	10						
14	80	10	10						

表1 梯度洗脱步骤

1.6 生态风险评价方法

1.6.1 以单物种测试为基础的评估因子法

根据欧盟技术指导文件(TGD)中关于环境风险 评价的方法,采用风险商值法(RQ)评价抗生素在水 体中的生态风险^[21],计算公式为:

RQ=MEC/PNEC

PNEC=(EC₅₀ 或 LC₅₀)/AF

式中:MEC 为环境中的实际检出浓度(ng·L⁻¹),基于 最严重的情况考虑,MEC 选择最大值计算;PNEC 为预测无效应浓度,是 EC_{s0} (半数效应浓度,ng·L⁻¹) 或者 LC_{s0} (半数致死浓度,ng·L⁻¹)与评价因子(AF)的 比值。根据 RQ 值可将生态风险划分为高风险(RQ >1),中等风险(0.1 \leq RQ<1),低风险(0.01 \leq RQ<0.1), 无风险(RQ<0.01)^[22]。相关毒理数据从已有研究中 查得,如表 2 所示。

1.6.2 物种敏感度分布曲线法(SSD)

SSD 方法是传统生态风险评价的外推,成形于 1985 年颁布的技术指南^[29]中,在 1998 年美国环境 保护局(US EPA)颁布的《生态风险评价指南》中通 过一个风险评估实例认可了 SSD 在生态风险评价 中的应用^[30]。SSD 法通常利用急性(LC₅₀ 或 EC₅₀)或 慢性(LOEC 或 NOEC)毒性数据进行曲线拟合,通过 计算最大环境许可浓度阈值(HC_x,通常取值 HC_s, 即该浓度下受到影响物种数不超过总物种数的 5% 时的浓度)进行风险评价。具体步骤如下。

(1)毒性数据的采集

SSD 要求每种抗生素有4种以上不同类别生物的毒性数据^[31],要有明确的受试生物、受试终点和暴露时间^[32]。本研究中有关 SDZ、SMX、TMP、CIP、NOR、LOM、FO和 CZO 的毒性数据来源于已发表的文献和 EPA ECOTOX 毒性数据库(Https://cfpub.epa.gov/ecotox/),具体数据如表3 所示。

(2)SSD 曲线拟合

研究选用急性毒性数据(LC₅₀ 或 EC₅₀)进行 SSD 曲线拟合,将急性毒性数据从小到大依次进行排序, 最小为1,最大为 N,n 为序号,对应的累计概率则为 1/(N+1)。以 LC₅₀ 或 EC₅₀ 对应的浓度对数值为横坐 标,以概率密度为纵坐标进行曲线拟合^[33]。目前国 际上常用的 SSD 拟合模型有 Sigmoid、Gaussian、 Gompertz、Logistic、Logarithm、Exponential growth 和 Lorentzian 等^[34-36],本研究从中选取合适的模型进行 了曲线拟合。

抗生素 Antibiotics	受试生物 Microorganism	$EC_{50}(LC_{50})/(mg \cdot L^{-1})$	AF	PNEC/($ng \cdot L^{-1}$)	文献 Literature
SDZ	羊角月牙藻 S. capricornutum	2.2	1 000	2 200	[23]
SMX	聚球藻 S. leopoliesis	0.27	1 000	270	[24]
TMP	红假单胞菌 <i>R. salina</i>	16	1 000	16 000	[25]
CIP	绿脓杆菌 M. aeruginosa	0.017	1 000	17	[26]
NOR	费氏弧菌 V. fischeri	0.022	100	220	[27]
LOM	小浮萍 Lemna minor	0.106	1 000	106	[26]
FO	藻类 Algae	1 128.329	1 000	1 128 329	[17]
CZO	水华鱼腥藻 A. flosaquae	0.0041	10	410	[28]

表 2 抗生素生态毒理数据 Table 2 Antibiotic ecotoxicological data

注:EC50 表示半数效应浓度;LC50 表示半数致死浓度;AF表示评价因子;PNEC表示预测无效应浓度。

Note: EC_{50} is the median effect concentration; LC_{50} is the median lethal concentration; AF is the evaluation factor; PNEC is the predicted no-effect concentration.

抗生素	受试生物	LC ₅₀ 或 EC ₅₀	毒性数据来源
Antibiotics	Microorganism	$/(mg \cdot L^{-1})$	Toxicity data source
	羊角月牙藻 S. capricornutum	2.19	[23]
(D7	水蚤 Daphnia	10.3	EPA ECOTOX
SDZ	绿藻 Green algae	40.4	EPA ECOTOX
	鱼 Fish	907	EPA ECOTOX
	浮萍 Lemna minor	0.62	EPA ECOTOX
	普通小球藻 Chlorella vulgaris	0.98	[38]
	羊角月牙藻 S. capricornutum	1.53	EPA ECOTOX
	小球衣藻 Sphaerocarpus	3.56	[37]
	臂尾轮虫 Brachionus plicatillis	9.63	EPA ECOTOX
SMX	蛋白核小球藻 Chlorella pyrenoidosa	18.8	[39]
	费氏弧菌 Vibrio fischeri	85.7	[39]
	大型蚤 Daphnia	188	[39]
	刺参 Sea cucumber	297	[40]
	青鳉 Oryzias latipes	563	EPA ECOTOX
	斑马鱼胚胎 Zebrafish embryo	1 300	[41]
	水蚤 Daphnia	6.38	EPA ECOTOX
	绿藻 Green algae	20.7	EPA ECOTOX
TMP	糠虾 Mysid	111	EPA ECOTOX
	鱼 Fish	212	EPA ECOTOX
	铜绿微囊藻 Microcystis aeruginosa	0.00922	EPA ECOTOX
	大型蚤 Daphnia	1.59	EPA ECOTOX
	羊角月牙藻 S. capricornutum	9.50	EPA ECOTOX
	小球藻 Chlorella vulgaris	20.6	[42]
CIP	亚心形扁藻 Platymonas subcordiformis	28.7	[43]
	羊角月牙藻 S. capricornutum	2.97	[44]
	东部食蚊鱼 Gambusia holbrooki	60.0	[44]
	近具刺链带藻 Desmodesmus subspicatus	100	[44]
	孔雀鱼 Poecilia reticulata	350	[45]
	盐生杜氏藻 Dunaliella salina	10.5	[46]
	新月菱形澡 N. closterium	25.4	[46]
	蛋白核小球藻 Chlorella pyrenoidosa	31.4	[47]
	利参 Sea cucumber	37.7	[40]
NOR	反元困 Luminescent bacteria	48.2	[48]
	計主咖碟 Sceneaesmus obliquus	195	[47]
	八金虫 Dapinna 孔雀舟 Poecilia reticulata	237	[47]
	預马角 Barchydanio rerio Var	646	[49]
	草角 Ctenopharyngodon idellus	1 000	EPA ECOTOX
	· · · · · · · · · · · · · · · · · · ·	0.186	EPA ECOTOX
	骨条藻 Skeletonema	2.84	ΕΡΑ ΕCOTOX
	羊角月牙藻 S. capricornutum	22.7	[50]
LOM	大型蚤 Daphnia	130	[50]
	大型蚤 Daphnia	420	[50]
	鱼 Fish	8 670	EPA ECOTOX

表 3 抗生素急性毒性数据

Table 3 Acute toxicity data of antibiotics

续表3			
抗生素	受试生物	LC ₅₀ 或 EC ₅₀	毒性数据来源
Antibiotics	Microorganism	$/(\mathrm{mg} \cdot \mathrm{L}^{-1})$	Toxicity data source
	水藻 Algae	1 128	[17]
FO	水蚤 Daphnia	1 290	EPA ECOTOX
FO	绿藻 Green algae	1 670	EPA ECOTOX
	鱼 Fish	13 600	EPA ECOTOX
	水华鱼腥藻 A. flosaquae	0.004	[28]
	赫氏双孢子虫 Geminocystis herdmanii	0.005	[28]
CZO	圆柱藻 Anabaena cylindrica	0.018	[28]
	纤细蓝藻 Cyanobium gracile	0.051	[28]
	鱼 Fish	2 370 000	EPA ECOTOX

(3)阈值计算和生态风险表征

根据 SSD 曲线中累计函数为 5% 时对应的浓度 对数值计算出 HC₅,通过风险商值法(RQ)进行表征, 计算公式为:

RQ=MEC/PNEC

$PNEC = HC_5 / AF$

式中:MEC、PNEC 仍分别为环境中的实际检出浓度 (ng·L⁻¹)和无效应浓度(ng·L⁻¹);AF 表示评价因子, 取值范围为1~5,保守评估取值为5。风险类型的 划分与传统的单物种测试评估因子法一致:RQ>1 为高风险, $0.1 \le RQ < 1$ 为中等风险, $0.01 \le RQ < 0.1$ 为低风险,RQ<0.01 无风险^[37]。

1.7 数据分析

采用 Excel 对数据进行统计分析,用 Excel、Origin 和 ArcGIS 10.6 做图。

2 结果与讨论(Results and discussion)

2.1 河流中抗生素浓度水平

河水中的各类目标抗生素的浓度与检出率如表 4 所示。由表 4 可知,滏阳河水中共检出 8 种抗生 素,检出范围为 ND ~ 205 ng·L⁻¹, CFC、CFM 未检 出。磺胺类的 3 种抗生素(SDZ、SMX 和 TMP)以及 喹诺酮类的 CIP、NOR 检出率为 100%,其余抗生素 检出率在 5.56% ~ 33.3%之间。从浓度上看,磺胺 类抗生素浓度最高,SDZ、SMX 和 TMP 的平均含量 均>90 ng·L⁻¹,其次为 NOR(74.4 ng·L⁻¹)、CIP(66.3 ng·L⁻¹),LOM、FO 和 CZO 的平均含量在 25 ng·L⁻¹ 以下;沁河水中共检出 7 种抗生素,浓度范围为 ND ~152 ng·L⁻¹,FO、CFC 和 CFM 均未检出。检出率 100%的为 SDZ 和 SMX,剩余 5 种抗生素检出率范 围为8.33% ~83.3%。平均含量在 60 ng·L⁻¹以上的 抗生素有 SDZ、SMX、TMP 和 CIP,NOR、LOM 和 CZO 的平均含量均在 45 $ng \cdot L^{-1}$ 以下。

整体上看,2条河流水中各类抗生素的检出率 和平均含量均为磺胺类>喹诺酮类>β-内酰胺类。 经分析推测磺胺类抗生素的高检出量是由其易溶于 水、难以光降解特性^[51-52]联合附近的用药特征^[53]共 同决定的。β-内酰胺类抗生素检出量低则是因为β-内酰胺环在水中不稳定易发生水解^[54],进而促进了 β-内酰胺类抗生素的降解。

2 条河流沉积物中抗生素浓度与检出率如表 5 所示,滏阳河沉积物中除β-内酰胺类的 3 种抗生素 (CZO、CFC 和 CFM)未检出外,其余 7 种抗生素均有 检出,其中 NOR 和 CIP 的检出率为 100%,剩余的 5 种抗生素检出率在 60% ~90%之间。沁河沉积物 中共检出 6 种目标抗生素,β-内酰胺类的 3 种抗生 素和 FO 均未检出。检出率最高的为 SDZ(100%)和 CIP(100%),SMX、TMP 和 NOR 的检出率为 60% ~ 80%。LOM 虽被检出,但检出率仅为 30%;从含量 上看,滏阳河抗生素浓度范围为 ND ~ 57.0 ng·g⁻¹, 平均含量最高的为 NOR(30.7 ng·g⁻¹),其次为 CIP (24.0 ng·g⁻¹),其余抗生素均在 20 ng·g⁻¹,其余 河沉积物中仅 CIP 的平均含量高于 20 ng·g⁻¹,其余

对比发现沉积物中抗生素的检出种类基本与水 样一致,但经相关研究发现喹诺酮类抗生素具有较 大的吸附系数,更容易吸附在沉积物中^[55-56],所以喹 诺酮类抗生素为沉积物中的优势种类而非在水中含 量较高的磺胺类抗生素。

2.2 河流中抗生素的时空分布特征

抗生素时空分布图如图2所示。从冬夏两季的 抗生素含量上看,水样和沉积物冬季的抗生素总浓度 明显高于夏季,这与Li等^[53]的研究结果相似,很可能 是由冬季流感造成抗生素类药物使用量增大导致的。

.....

	14010	concentratio	in una actection	iute of vulle	us unnoiones m	i iii ei water	
			滏阳河			沁河	
			Fuyang River			Qin River	
抗	生素	浓度范围	平均含量		浓度范围	平均含量	
Anti	biotics	$/(ng \cdot L^{-1})$	$/(ng \cdot L^{-1})$	检出率/%	$/(ng \cdot L^{-1})$	$/(ng \cdot L^{-1})$	检出率/%
		Concentration	Average	Detection	Concentration	Average	Detection
		range/(ng \cdot L ⁻¹)	$content/(ng \cdot L^{-1})$	rate/%	range/($ng \cdot L^{-1}$)	$content/(ng \cdot L^{-1})$	rate/%
	SDZ	42.5 ~ 205	98.5	100	38.4 ~ 138	76.2	100
磺胺类	SMX	42.6 ~ 169	93.9	100	58.6 ~133	78.1	100
Sulfonamides	TMP	32.2 ~ 196	94.4	100	ND ~ 152	70.4	83.3
	平均值 Mean	32.2 ~ 205	95.6	100	ND ~ 138	74.9	94.4
	CIP	33.5 ~ 132	66.3	100	ND ~ 112	64.9	83.3
	NOR	30.0 ~ 168	74.4	100	ND ~ 126	43.0	66.7
些话 門 尖	LOM	ND ~ 68.8	13.8	33.3	ND ~ 57.8	13.4	33.3
Quinoiones	FO	ND ~ 45.2	20.2	27.8	ND	ND	0
	平均值 Mean	ND ~ 168	43.7	65.3	ND ~ 126	30.3	45.8
	CZO	ND ~ 33.2	3.69	5.56	ND ~ 30.2	5.04	8.33
β -内酰胺类	CFC	ND	ND	0	ND	ND	0
β -actams	CFM	ND	ND	0	ND	ND	0
	平均值 Mean	ND ~ 33.2	1.23	1.85	ND ~ 30.2	1.68	2.78

表 4 河水中各类抗生素浓度与检出率

Table 4 Concentration and detection rate of various antibiotics in river water

注:平均值对应数据为各类抗生素的整体检出浓度和平均含量与检出率的均值。

Note: The corresponding data of "Mean" is the overall detection concentration, average content and average detection rate of various antibiotics.

表 5 沉积物中各类抗生素浓度与检出率

			滏阳河			沁河					
Fuyang River						Qin River					
抗: Anti	生素 biotics	浓度范围/(ng·g ⁻¹) Concentration range/(ng·g ⁻¹)	平均含量 /(ng·g ⁻¹) Average content/(ng·g ⁻¹)	检出率/% Detection rate/%	浓度范围/(ng·g ⁻¹) Concentration range/(ng·g ⁻¹)	平均含量 /(ng·g ⁻¹) Average content/(ng·g ⁻¹)	检出率/% Detection rate/%				
	SDZ	ND ~27.1	15.6	80.0	6.68 ~27.3	11.9	100				
磺胺类	SMX	ND ~ 25.3	13.3	90.0	ND ~ 12.3	7.26	80.0				
Sulfonamides	TMP	ND ~ 20.2	10.2	80.0	ND ~ 23.9	10.3	60.0				
	平均值 Mean	ND ~ 27.1	12.99	83.3	ND ~ 27.3	9.84	80.0				
	CIP	5.89 ~ 55.4	24.0	100	6.25 ~ 36.6	20.6	100				
はないないのよう	NOR	10.2 ~ 48.9	30.7	100	ND ~ 28.8	14.5	80.0				
喹佑酮尖	LOM	ND ~ 57.0	14.3	60.0	ND ~ 14.6	3.13	30.0				
Quilioiones	FO	ND ~ 16.5	7.76	60.0	ND	ND	0				
	平均值 Mean	ND ~ 57.0	19.2	80.0	ND ~ 36.6	9.56	52.5				
	CZO	ND	ND	0	ND	ND	0				
β -内酰胺类	CFC	ND	ND	0	ND	ND	0				
β -actams	CFM	ND	ND	0	ND	ND	0				
	平均值 Mean	ND	ND	0	ND	ND	0				

 Table 5
 Concentration and detection rate of various antibiotics in sediments

注:平均值对应数据为各类抗生素整体检出浓度范围、平均含量和平均检出率。

Note: The corresponding data of "Mean" are the overall detection concentration range, average content and average detection rate of various antibiotics.

从图 2(a)中对比 2 条河流的抗生素污染状况发现,滏阳河流域因交通、商业发达,人口分布密集,水体受人类活动影响更大^[57],所以在残留的抗生素种类和含量上均高于沁河。在 F3 处河水中抗生素的浓度有所上升,结合采样点分布图得知 F3 采样点为邯山区滏阳公园附近,地处邯郸市老城区,排水设施老旧,人口密度大,因此推测此处是因人类活动的增加以及生活污水的不合理排放导致水中抗生素浓度的升高。滏阳河下游的 F7 处因沁河来水的冲淡作用,抗生素的含量有明显的下降。对于贯穿整个

市区的滏阳河来说,出市断面 F9 处的抗生素的种 类与含量与入市断面 F1 处相比显著增加,说明了 此城市河流对下游海河流域的水环境中抗生素污染 问题起到了加重的作用。

Guo 等^[88]通过对凉水河 13 个采样点的抗生素 进行检测分析后发现,在水体和沉积物中检测到抗 生素的总浓度都在污水处理厂排放的下游有所增 加。但本研究显示,冬夏两季的抗生素浓度峰值出 现在了 F6 和 Q4 这 2 点而非距离污水处理厂补水 点下游最近的 F5 和 Q3 点。为分析其中的原因,进 行分类发现,冬夏两季的水样中 F5 和 Q3 点与其上 游的 F4 和 Q2 点为一类,从一定程度上体现了污水 处理厂出水点附近的上下游抗生素浓度并无明显变 化。在 F5 和 Q3 下游的 F6 和 Q4 处抗生素含量有 了明显的上升,这种情况可能是由污水处理厂出水 污染物扩散造成的。在研究污水处理厂出水对下游 水体影响时需注意采样点的距离问题。

由图 2(b)可知,滏阳河沉积物中各类抗生素的 峰值均出现在了水流流速缓慢的 F6 点,沁河沉积 物中抗生素浓度最高点出现在 Q3 附近。结合当地 水流状态及吸附动力学^[59]分析沉积物中的抗生素含量可能受水利条件的影响较大。水流速度小的 F6 和 Q3 区域水力停留时间更长,沉积物对抗生素的吸附量更大。吴天宇等^[60]在对赤水河流域的污染特征研究中也得出了相同的结果。

2.3 与我国南方及国外城市河流对比分析

已知 10 种典型抗生素中在 2 条河流中共检出 8 种,其中检出率>30% 的有 6 种(SDZ、TMP、SMX、NOR、CIP 和 LOM),故重点考察这 6 种抗生素在北方地区的 2 条河流与我国南方以及国外地区的城市河流中的浓度差异,如表 6 所示。

图 3 采样点聚类图 Fig. 3 Cluster map of sampling points in winter and summer

SDZ 与 TMP 为兽医最常用的组合药物,在邯 郸市滏阳河和沁河中,这 2 种抗生素的检出含量远 高于珠江广州段,这可能与邯郸地区较为发达的养 殖业以及相对缺乏的污染治理设施有关^[60]。SMX 在河流中的含量除我国香港外,略低于国内其他南 方地区的城市河流,但因巴西的瓜伊巴河流域有多 家大型医院分布,并且城市中还存在着污水管道与 雨水管道非法连接的情况,导致了巴西的城市河流 中此类抗生素的含量远高于邯郸地区的滏阳河和沁 河^[64]。而 NOR 作为常用的人用抗生素,在人口分 布密集的地区往往检出量更大,因此滏阳河中此类 抗生素的含量和检出率高于沁河、珠江和南明河。 由于印度的穆西河接收制药厂废水,NOR、CIP 和 LOM 的浓度水平明显高于其他城市河流;除印度的 穆西河外,滏阳河与沁河中 CIP 的浓度均高于参比

的其他城市河流。LOM 在滏阳河和沁河的最高含量甚至高于美国兰辛的污水处理厂出水^[65]。通过与国内南方城市河流及国外城市河流的对比发现,此研究中的北方城市河流中的磺胺类以及喹诺酮类的抗生素处于较高的污染水平。

2.4 抗生素生态风险评价

由于未检出 CFC 和 CFM,故对剩余8种抗生素 进行了生态风险评估。根据以单物种测试为基础的 评估因子法计算出的 RQ 值绘制的风险评估图如图 4 所示,由图 4 可知,参与评估的 8 种抗生素中有 7 种存在生态风险,其中有 4 种抗生素表现为中高风 险。喹诺酮类抗生素的生态风险最高,CIP 在冬夏 季的 2 条城市河流中的 RQ 值均在 5.0 以上,对当 地的敏感性生物产生了严重的威胁。LOM 和 NOR 为中等风险,仅 FO 表现为无风险;磺胺类抗 生素中 SMX 表现为中等生态风险,其余 2 种抗生素(SDZ 和 TMP)表现为低风险或无风险。β-内酰 胺类抗生素只有 CZO 在冬季水体中检出,表现为 低生态风险。

由于风险评估方式不具有统一性,为使评估结 果更加准确,本研究添加了 SSD 法进一步对抗生素 的生态风险作出了评估。8 种抗生素的 SSD 曲线如 图 5 所示,根据曲线中累计概率为 0.05 时对应的浓 度对数值可计算出 HC₅ 的抗生素浓度值,进而推算 出 RQ。SSD 法以及以单物种测试为基础的评估因 子法计算出的风险商值从大到小的排序结果如表 7 所示。

城市河流				抗生素浓	~ 樹			
Urban rivers		Antibiotic concentration/(ng · L ⁻¹)					Literature	
		SDZ	TMP	SMX	NOR	CIP	LOM	Enerature
※阳河 中日批新学	Max	205	196	169	167	132	68.8	* ->-
滏阳河,中国邯郸市 Fuyang River, Handan, China	Mean	98.5	94.4	93.9	74.4	66.3	13.8	平义 This study
Fuyang River, Handan, China	Freq/%	100	100	100	100	100	33.3 This study	
沙河 中国地策学	Max	138	152	132	126	132	57.8	**
沁河,中国即即印 Oin Diven Henden Chine	Mean	76.2	70.3	78.1	43.0	64.9	13.4	平义 This study
Qin River, Handan, China	Freq/%	100	83.3	100	66.7	83.3	33.3	This study
	Max	13.7	27.4	210	18.9	30.5	ND	
珠江,中国广州	Mean	6.71	6.65	24.9	5.73	5.35	ND	[61]
Pearl River, Guangzhou, China	Freq/%	100	100	100	9.3	62	0	
	Max	_	_	238	133	35.5	_	
南明河,中国贵阳	Mean	_	_	116	30	7.65	_	[12]
Nanming River, Guiyang, China	Freq/%	_	_	100	100	100	_	
黄浦江,中国上海 Huangpu River, Shanghai, China	Max	_	_	_	ND	<9.33	_	[14]
	Freq/%	—	—	—	0	7.9	—	[14]
一	Max	_	_	152	34	68	_	[(2)]
River, Hong Kong, China	Freq/%	—	—	100	10	70	—	[02]
拍玉河 伯南	Max	—	—	—	251 130	5 528 900	10 320	
修四河,印度 Musi Diver India	Mean	—	—	—	69 774	789 142	5 608	[63]
wiusi Kivei, ilidia	Freq/%	—	—	—	100	100	100	
пда пж	Max	_	—	572	_		_	
瓜伊巴河,巴西	Mean	—	—	458	—	_	—	[64]
Guaida River, Brazii	Freq/%	_	_	100	_	_	_	
红塞德尔河,美国 Red Seidel, USA	Max	_	_	_	<45	<19	<41	[65]
格兰德河,美国 Rio Grande, USA	Max	_	_	_	<45	<19	<41	[65]
佩托斯基河,美国 Petoskey River, USA	Max	_	_	_	<45	<19	<41	[65]
底特律河,美国 Detroit River, USA	Max	_	_	_	<45	<19	<41	[65]

表 6 国内外部分城市河流抗生素污染水平

	Table 6	Antibiotic	pollution	levels	in	rivers	of	some	cities	at	home	and	abroa
--	---------	------------	-----------	--------	----	--------	----	------	--------	----	------	-----	-------

注:一表示无数据;ND表示未检出;Max表示最大值;Mean表示平均值;Freq表示检出率。

Note: - means no data; ND means not detected; Max means maximum; Freq means detection frequency.

基于 SSD 法的生态风险评估显示,夏季水中所 有抗生素均表现为无生态风险,冬季 2 条河流中仅 有 CZO 和 LOM 存在风险。其中 LOM 的生态风险 在 2 种评估方法中均较高,有研究表明,LOM 与 CIP 等喹诺酮类抗生素相比对生物体具有更高的急性毒性^[67],同时 LOM 在有阳光光照的条件下还会产生光毒性,造成细胞损伤^[68],所以即使其在水体中存在的浓度较低也会引起较高的生态风险。对比2

图 5 8 种抗生素对水生生物急性毒性的物种敏感度分布(SSD)曲线

Fig. 5 The species sensitivity distribution (SSD) curves of 8 kinds of antibiotics acute toxicity to aquatic organisms

种方法进行的生态风险排序发现 SSD 法评估的抗 生素的生态风险显著降低,这是由于 SSD 法与单一 物种测试法相比增加了水环境中营养级更高的生 物,增强了对抗生素的抵抗能力,更能反映生态系统 的真实情况^[69]。在 SSD 法评估中水中含量较多的 磺胺类抗生素风险值也较大,而在传统单一的敏感 物种测试评估法中生态风险较高的则为喹诺酮类抗 生素。究其原因是传统的单一物种测试法更关注于 低营养级的敏感性生物,喹诺酮类抗生素因有抗菌 谱广、药效强的特点^[70],所以即使在水中的含量较低 也会对敏感的低营养级水生生物表现出明显的抑杀 作用。

	单物种测试	法(RQ)排序		SSD 法(RQ)排序					
	Single species t	est (RQ) ranking			SSD method	(RQ) ranking			
夏季滏阳河	夏季沁河	冬季滏阳河	冬季沁河	夏季滏阳河	夏季沁河	冬季滏阳河	冬季沁河		
Fuyang River	Qin River	Fuyang River	Qin River	Fuyang River	Qin River	Fuyang River	Qin River		
in summer	in summer	in winter	in winter	in summer	in summer	in winter	in winter		
CIP(5.138)	CIP(5.849)	CIP(7.779)	CIP(6.604)	LOM(0.0090)	LOM(0.0070)	CZO(0.1203)	CZO(0.1095)		
NOR(0.419)	NOR(0.313)	NOR(0.762)	NOR(0.574)	SMX(0.0065)	SMX(0.0049)	LOM(0.015)	LOM(0.0126)		
LOM(0.389)	LOM(0.304)	LOM(0.649)	LOM(0.545)	SDZ(0.0040)	SDZ(0.0041)	SMX(0.0106)	SMX(0.0083)		
SMX(0.383)	SMX(0.287)	SMX(0.626)	SMX(0.491)	CIP(0.0022)	CIP(0.0025)	SDZ(0.0072)	SDZ(0.0049)		
SDZ(0.051)	SDZ(0.053)	SDZ(0.093)	CZO(0.074)	TMP(0.0002)	TMP(0.0001)	CIP(0.0034)	CIP(0.0029)		
TMP(0.006)	TMP(0.003)	CZO(0.081)	SDZ(0.063)	NOR(0)	NOR(0)	TMP(0.004)	TMP(0.0003)		
FO(-)	FO(-)	TMP(0.012)	TMP(0.010)	FO(-)	FO(-)	NOR(0.0001)	NOR(0.0001)		
CZO(-)	CZO(-)	FO(0)	FO(-)	CZO(-)	CZO(-)	FO(0)	FO(-)		

Table 7 Ant	tibiotic	ecological	risk	ranking
-------------	----------	------------	------	---------

注:-表示抗生素未检出,未计算风险商值;()内为各类抗生素所对应的风险商值(RQ)。

Note: - means no data, and risk quotient is not calculated; () is the risk quotient (RQ) value of various antibiotics.

目前有关生态风险评价的方法不具有统一性, 参与毒性试验的物种不够丰富,污染物对生态环境 造成的风险极有可能被低估。SSD 法相较于传统 的风险商值法,可充分利用已有的多营养级多物种 毒性数据,即充分运用了所有有效信息,所以更能反 映抗生素对生态系统的真实影响情况^[69]。传统的单 一物种测试评估法更多关注于水环境中的营养级较 低的敏感生物,在研究抗生素对水环境的长久作用 下产生的潜在生态风险上有一定意义。2种风险评 价结果显示大部分抗生素处于低风险和无风险水 平,但值得注意的是低浓度的抗生素仍会对水中微 生物造成选择性压力,促进抗性基因的形成和积累, 对水生态环境产生潜在的威胁。其中 LOM 在 2 条 北方城市河流中存在的生态风险普遍较高,有关北 方地区的城市河流中 LOM 抗生素污染问题应得到 重视。

本文针对北方地区城市河流中的10种典型抗 生素从浓度水平、时空分布特征以及产生的生态风 险等方面进行了探究,得出以下结论。

(1)滏阳河与沁河水中分别检出 8 种和 7 种抗 生素,浓度范围分别为 ND~205 ng·L⁻¹和 ND~152 ng·L⁻¹,2 条河流中磺胺类抗生素检出率与平均含 量最高,其次为喹诺酮类,β-内酰胺类;沉积物中分 别检出 7 种和 6 种抗生素,检出浓度范围分别为 ND~57.0 ng·g⁻¹和 ND~36.6 ng·g⁻¹。检出率较高 的为喹诺酮类的 CIP 和 NOR(80%~100%),磺胺类 居中(60%~100%), LOM 检出率最低(30%~ 60%),FO 仅在滏阳河中检出(60%),β-内酰胺类 3 种抗生素未在沉积物中检出。

(2)水中抗生素在污水处理厂下游以及人类活动频繁地区有所增加,沉积物中抗生素含量在水流 速度小的地区出现峰值。总体上呈现冬季高于夏 季,出市断面高于人市断面,滏阳河高于沁河的空间 分布特征。

(3)与我国南方地区以及国外城市河流相比, 此研究中的北方城市河流中的磺胺类和喹诺酮类的 抗生素处于较高的污染水平。

(4)单物种测试为基础的生态风险评估显示 SMX、CIP、NOR 和 LOM 处于中高风险水平,其中 CIP 最为严重, RQ 值均在 5.0 以上。SSD 法则显示 大部分抗生素处于无生态风险水平,但 2 种风险评 价结果均表明 LOM 在 2 条北方城市河流中存在较 高生态风险,有关北方地区的城市河流中 LOM 抗 生素污染问题应得到重视。

共同通讯作者简介:汪庆(1985—),男,博士,教授,主要研究 方向为环境微生物。

参考文献(References):

- Böger B, Surek M, Vilhena R O, et al. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil [J]. Journal of Hazardous Materials, 2021, 402: 123448
- [2] Valdés M E, Santos L H M L M, Rodríguez Castro M C, et al. Distribution of antibiotics in water, sediments and

biofilm in an urban river (Córdoba, Argentina, LA) [J]. Environmental Pollution, 2021, 269: 116133

- [3] Da Le N, Hoang A Q, Hoang T T H, et al. Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, profiles, source estimation, and risk assessment [J]. Environmental Science and Pollution Research International, 2021, 28(9): 10622-10632
- [4] Alder A, McArdell C, Golet E, et al. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland [J]. ACS Symposium Series, 2001, 791: 56-69
- [5] Lindsey M E, Meyer T M, Thurman E M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry [J]. Analytical Chemistry, 2001, 73(19): 4640-4646
- [6] 赵富强,高会,张克玉,等.中国典型河流水域抗生素 的赋存状况及风险评估研究[J].环境污染与防治, 2021,43(1):94-102
 Zhao F Q, Gao H, Zhang K Y, et al. Occurrence and risk assessment of antibiotics in typical river basins in China [J]. Environmental Pollution & Control, 2021, 43(1): 94-

 $\begin{array}{c} \text{[1]} \text{Environmental Foldulor & Control, 2021, 45(1).} \\ 102 \text{ (in Chinese)} \end{array}$

- [7] Peng Q C, Song J M, Li X G, et al. Biogeochemical characteristics and ecological risk assessment of pharmaceutically active compounds (PhACs) in the surface seawaters of Jiaozhou Bay, North China [J]. Environmental Pollution, 2019, 255(Pt 1): 113247
- [8] Ding H J, Wu Y X, Zhang W H, et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China [J]. Chemosphere, 2017, 184: 137-147
- [9] 张慧, 郭文建, 刘绍丽, 等. 南四湖和东平湖表层水体 中抗生素污染特征和风险评价[J]. 环境化学, 2020, 39 (12): 3279-3287

Zhang H, Guo W J, Liu S L, et al. Contamination characteristics and risk assessment of antibiotics in surface water of Nansi Lake and Dongping Lake [J]. Environmental Chemistry, 2020, 39(12): 3279-3287 (in Chinese)

- [10] Carvalho I T, Santos L. Antibiotics in the aquatic environments: A review of the European scenario [J]. Environment International, 2016, 94: 736-757
- [11] 高俊敏, 舒心, 侯先宇, 等. 村镇尺度水土环境中抗生素的污染特征及源解析[EB/OL]. (2021-07-07) [2021-09-17]. https://doi.org/10.19674/j. cnki.issn1000-6923.20210706.015

- [12] 王娅南,彭洁,黄合田,等.贵阳市城市河流典型抗生素的分布特征[J].环境化学,2018,37(9):2039-2048
 Wang Y N, Peng J, Huang H T, et al. Distribution characteristics of typical antibiotics in urban rivers of Guiyang City [J]. Environmental Chemistry, 2018, 37 (9): 2039-2048 (in Chinese)
- [13] Wang G G, Zhou S H, Han X K, et al. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing City, Southwest China [J]. Journal of Hazardous Materials, 2020, 389: 122110
- [14] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011, 82(6): 822-828
- [15] Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China [J]. The Science of the Total Environment, 2019, 658: 333-342
- [16] Qiu W H, Sun J, Fang M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community
 [J]. The Science of the Total Environment, 2019, 653: 334-341
- [17] 申立娜,张璐璐,秦珊,等. 白洋淀喹诺酮类抗生素污染特征及其与环境因子相关性研究[J]. 环境科学学报,2019,39(11): 3888-3897
 Shen L N, Zhang L L, Qin S, et al. The occurrence and distribution of quinolones (QNs) and correlation analysis between QNs and physical-chemical parameters in Baiyangdian Lake, North China [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3888-3897 (in Chinese)
 [18] 颦楚. 2019 中国医药企业品牌影响力排行榜[J]. 互联

网周刊, 2019(23): 44-47 Pin C. 2019 Chinese pharmaceutical enterprise brand in-

fluence ranking [J]. China Internet Week, 2019(23): 44-47 (in Chinese) [19] 张旭, 王雅静, 赵志强, 等. 华北地区部分河流中典型

抗生素的分布特征及来源分析[J]. 环境监测管理与技术, 2020, 32(5): 14-17

Zhang X, Wang Y J, Zhao Z Q, et al. Distribution characteristics and source analysis of typical antibiotics in some rivers in North China [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(5): 14-17 (in Chinese)

[20] 李清雪, 孙王茹, 汪庆. SPE-HPLC 测定水中 β-内酰胺 类、喹诺酮类、磺胺类抗生素[J]. 中国给水排水, 2019, 35(18): 118-122 李清雪等:典型北方城市河流中抗生素污染特征及风险评价

Li Q X, Sun W R, Wang Q. Determination of β -lactams, quinolones and sulfonamides antibiotics in water by SPE-HPLC [J]. China Water & Wastewater, 2019, 35(18): 118-122 (in Chinese)

- [21] Guérit I, Bocquené G, James A, et al. Environmental risk assessment: A critical approach of the European TGD in an *in situ* application [J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 291-300
- [22] Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta, 2006, 69(2): 334-342
- [23] Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae [J]. Chemosphere, 2004, 57(11): 1733-1738
- [24] Ferrari B, Mons R, Vollat B, et al. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? [J]. Environmental Toxicology and Chemistry, 2004, 23 (5): 1344-1354
- [25] Holten Lützhøft H, Halling-Sørensen B, Jørgensen S E. Algal toxicity of antibacterial agents applied in Danish fish farming [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6
- [26] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423
- [27] Backhaus T, Scholze M, Grimme L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium *Vibrio fischeri* [J]. Aquatic Toxicology, 2000, 49(1-2): 49-61
- [28] Le Page G, Gunnarsson L, Trznadel M, et al. Variability in cyanobacteria sensitivity to antibiotics and implications for environmental risk assessment [J]. The Science of the Total Environment, 2019, 695: 133804
- [29] United States Environmental Protection Agency (US EPA). Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses [R]. Washington DC: US EPA, 1985
- [30] United States Environmental Protection Agency (US EPA). Guidelines for ecological risk assessment. EPA/630/ R-95/002F [R]. Washington DC: US EPA, 1998
- [31] 梁峰. 我国典型流域重金属的风险评价及六价铬水质 基准的推导[D]. 南京: 南京大学, 2011: 11-12
 Liang F. The ecological risk assessment of heavy metals and the derivation of water quality criteria of hexavalent

chromium for typical basins in China [D]. Nanjing: Nanjing University, 2011: 11-12 (in Chinese)

[32] 汪涛,杨再福,陈勇航,等.地表水中磺胺类抗生素的
 生态风险评价[J]. 生态环境学报, 2016, 25(9): 1508 1514

Wang T, Yang Z F, Chen Y H, et al. Ecological risk assessment for sulfonamides in surface waters [J]. Ecology and Environmental Sciences, 2016, 25(9): 1508-1514 (in Chinese)

[33] 梁霞,周军英,李建宏,等.物种敏感度分布法(SSD)在农药水质基准推导中的应用[J]. 生态与农村环境学报,2015,31(3): 398-405
 Liang X, Zhou J Y, Li J H, et al. Application of species

sensitivity distribution (SSD) to derivation of species ty criteria for pesticides [J]. Journal of Ecology and Rural Environment, 2015, 31(3): 398-405 (in Chinese)

- [34] Canadian Council of Ministers of the Environment (CC-ME). A protocol for the derivation of water quality guidelines for the protection of aquatic life [R]. Winnipeg, Manitoba: CCME, 1999
- [35] Canadian Council of Ministers of the Environment (CC-ME). A protocol for the derivation of water quality guidelines for the protection of aquatic life. Canadian environmental quality guidelines [R]. Ottawa: CCME, 2007
- [36] National Institute of Public Health and the Environment (RIVM). Guidance document on deriving environmental risk limits in the Netherlands. Report No. 601501012 [R]. Bilthoven: RIVM, 2001
- [37] 陈莹, 赵晓光. 西安市典型河流中4种抗生素的生态风 险评价[J]. 环境污染与防治, 2021, 43(5): 626-630 Chen Y, Zhao X G. Ecological risk assessment of four antibiotics in typical rivers of Xi' an [J]. Environmental Pollution & Control, 2021, 43(5): 626-630 (in Chinese)
- [38] Borecka M, Białk-Bielińska A, Haliński Ł P, et al. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae *Chlorella vulgaris* [J]. Journal of Hazardous Materials, 2016, 308: 179-186
- [39] 王作铭,陈军,陈静,等. 地表水中抗生素复合残留对水生生物的毒性及其生态风险评价[J]. 生态毒理学报, 2018, 13(4): 149-160
 Wang Z M, Chen J, Chen J, et al. Toxicity to aquatic organisms and ecological risk assessment of antibiotic compound residues in the surface water [J]. Asian Journal of Ecotoxicology, 2018, 13(4): 149-160 (in Chinese)
 [40] 赵业 唐永政 态重约 第 四种典型拉生素对刺发体
- [40] 赵业, 唐永政, 李秉钧, 等. 四种典型抗生素对刺参幼参的急性毒性研究[J]. 海洋湖沼通报, 2019(2): 132-138
 Zhao Y, Tang Y Z, Li B J, et al. Acute toxic effects of

four typical antibiotics on juvenile of sea cucumber [J]. Transactions of Oceanology and Limnology, 2019 (2): 132-138 (in Chinese)

- [41] 刘仁彬,姜锦林,张宇峰,等.磺胺甲恶唑对斑马鱼胚胎/仔鱼的毒性效应[J].环境污染与防治,2020,42(3):310-316
 Liu R B, Jiang J L, Zhang Y F, et al. Toxic effects of sulfamethoxazole on zebrafish (*Danio rerio*) embryo/larva
 [J]. Environmental Pollution & Control, 2020, 42(3): 310-
- 316 (in Chinese)
 [42] 聂湘平, 王翔, 陈菊芳, 等. 三氯异氰尿酸与盐酸环丙 沙星对蛋白核小球藻的毒性效应[J]. 环境科学学报, 2007, 27(10): 1694-1701

Nie X P, Wang X, Chen J F, et al. Toxic effects of trichloroisocyanuric acid and ciprofloxacin hydrochloride on a freshwater alga, *Chlorella pyrenoidosa* [J]. Acta Scientiae Circumstantiae, 2007, 27(10): 1694-1701 (in Chinese)

[43] 连鹏, 葛利云, 邓欢欢, 等. 两种喹诺酮类抗生素对亚 心形扁藻的毒性效应研究[J]. 环境科学与管理, 2014, 39(5): 46-48
Lian P, Ge L Y, Deng H H, et al. Toxic effects of two quinolone antibiotics on *Platymonas subcordiformis* [J]. Environmental Science and Management, 2014, 39(5): 46-48 (in Chinese)

- [44] FASS. FASS Allmanhet-Startsida [EB/OL]. (2018-12-04)[2021-10-07]. https://www.fass.se/LIF/startpage/
- [45] 房英春, 齐跃, 李莹, 等. 盐酸环丙沙星、恩诺沙星和诺 氟沙星对孔雀鱼急性毒性试验研究[J]. 沈阳大学学报: 自然科学版, 2012, 24(3): 15-17
 Fang Y C, Qi Y, Li Y, et al. Acute toxicity experience to guppy with ciprofloxacin HCl, enrofloxacin and norfloxacin [J]. Journal of Shenyang University: Natural Science, 2012, 24(3): 15-17 (in Chinese)
- [46] 施文杰, 王长友, 杨锐. 诺氟沙星对盐生杜氏藻、新月 菱形藻和小球藻的生态毒性效应[J]. 海洋环境科学, 2019, 38(1): 1-6
 Shi W J, Wang C Y, Yang R. Effects of norfloxacin on *Dunaliella salina, Nitzschia closterium* f. minutissima and

Chlorella vulgaris [J]. Marine Environmental Science, 2019, 38(1): 1-6 (in Chinese)

- [47] 鹿金雁. 叔丁基对羟基茴香醚和诺氟沙星对水生生物 的毒性效应[D]. 广州: 暨南大学, 2007:1
 Lu J Y. Toxic effects of butylated hydroxyanisole and norfloxacin to aquatic organsims [D]. Guangzhou: Jinan University, 2007:1 (in Chinese)
- [48] 汪皓琦, 董玉瑛, 汪灵伟, 等. 4 种喹诺酮类抗生素对发 光菌毒性作用研究[J]. 生态毒理学报, 2017, 12(3): 453-459

Wang H Q, Dong Y Y, Wang L W, et al. The toxicity of four quinolones to *Photobacterium phosphoreum* [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 453-459 (in Chinese)

- [49] 蔡梦婷,侯国权,奚豪,等.典型抗生素与重金属铜复合暴露对淡水绿藻和斑马鱼的联合毒性[J].浙江树人大学学报:自然科学版,2018(2):11-15
 Cai M T, Hou G Q, Xi H, et al. Combined toxicity of co-exposure of typical antibiotic and heavy metal copper on freshwater green algae and zebrafish [J]. Journal of Zhe-jiang Shuren University: Natural Science Edition, 2018(2): 11-15 (in Chinese)
- [50] Pfizer Inc. Pfizer-Lomefloxacin Hydrochloride Tablets. Material safety data sheet [EB/OL]. (2018-12-20) [2021-11-11]. http://www.pfizer.com
- [51] Zheng S L, Qiu X Y, Chen B, et al. Antibiotics pollution in Jiulong River Estuary: Source, distribution and bacterial resistance [J]. Chemosphere, 2011, 84(11): 1677-1685
- [52] Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups [J]. Environmental Science & Technology, 2004, 38 (14): 3933-3940
- [53] Li W H, Shi Y L, Gao L H, et al. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China [J]. Chemosphere, 2013, 92 (4): 435-444
- [54] Hou J P, Poole J W. β-lactam antibiotics: Their physicochemical properties and biological activities in relation to structure [J]. Journal of Pharmaceutical Sciences, 1971, 60 (4): 503-532
- [55] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. The Science of the Total Environment, 2018, 627: 1195-1208
- [56] Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008, 151(2-3): 833-839
- [57] 王正文. 邯郸市滏阳河综合治理初探[J]. 价值工程, 2011, 30(19): 317
 Wang Z W. Exploration on comprehensive treatment of Fuyang River in Handan City [J]. Value Engineering, 2011, 30(19): 317 (in Chinese)
- [58] Guo X Y, Feng C H, Zhang J H, et al. Role of dams in the phase transfer of antibiotics in an urban river receiving wastewater treatment plant effluent [J]. The Science of the Total Environment, 2017, 607-608: 1173-1179
- [59] 杨宇轩, 徐瑞皎, 冯启言, 等. 3 种喹诺酮类抗生素在骆

马湖饮用水源地沉积物上的吸附特征[J]. 环境污染与防治, 2020, 42(6): 717-722

Yang Y X, Xu R J, Feng Q Y, et al. Adsorption characteristics of three quinolone antibiotics on sediment from drinking water source of Luoma Lake [J]. Environmental Pollution & Control, 2020, 42(6): 717-722 (in Chinese)

- [60] 吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1): 210-219
 Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui River Basin, Guizhou Province, China [J]. Environmental Science, 2022, 43(1): 210-219 (in Chinese)
- [61] 周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报, 2017, 26(6): 1034-1041
 Zhou Z H, Zhao J L, Wei X D, et al. Co-occurrence and

ecological risk of antibiotics in surface water of Guangzhou section of Pearl River [J]. Ecology and Environmental Sciences, 2017, 26(6): 1034-1041 (in Chinese)

- [62] Selvam A, Kwok K, Chen Y M, et al. Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong [J]. Environmental Science and Pollution Research International, 2017, 24(10): 9058-9066
- [63] Gothwal R, Shashidhar. Occurrence of high levels of fluoroquinolones in aquatic environment due to effluent discharges from bulk drug manufacturers [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21(3): 1-8
- [64] Jank L, Hoff R B, Costa F J D, et al. Simultaneous determination of eight antibiotics from distinct classes in sur-

face and wastewater samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionisation mass spectrometry [J]. International Journal of Environmental Analytical Chemistry, 2014, 94(10): 1013-1037

- [65] Nakata H, Kannan K, Jones P D, et al. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection [J]. Chemosphere, 2005, 58(6): 759-766
- [66] 栗萍. 邯郸市畜禽养殖业污染现状及减排措施分析[J]. 中国农业信息, 2013(7): 144
- [67] 崔建新, 刘玉荣, 赵小凤, 等. 5 种喹诺酮类药急性毒性 实验[J]. 中国医院药学杂志, 2001, 21(11): 680
 Cui J X, Liu Y R, Zhao X F, et al. Acute toxicity experiment of five quinolones [J]. Chinese Journal of Hospital Pharmacy, 2001, 21(11): 680 (in Chinese)
- [68] 顾玉英, 邓湘平. 喹诺酮类药物的光毒性反应及原因 分析[J]. 现代医药卫生, 2005, 21(19): 2610
- [69] Forbes V E, Calow P. Species sensitivity distributions revisited: A critical appraisal [J]. Human and Ecological Risk Assessment: An International Journal, 2002, 8 (3): 473-492
- [70] 蔡立红, 阮姝楠, 郭晓红. 180 例喹诺酮类药品的不良
 反应临床分析[J]. 中国临床药理学杂志, 2016, 32(8):
 736-737
 Cail H. Buen S. N. Cue, Y. H. Clinical analysis on 180

Cai L H, Ruan S N, Guo X H. Clinical analysis on 180 cases of quinolone drugs on adverse drug reactions [J]. The Chinese Journal of Clinical Pharmacology, 2016, 32 (8): 736-737 (in Chinese)