作为溴代阻燃剂,多溴联苯醚(poly brominated diphenyl ethers, PBDEs)由于其价格低廉、用量少、阻燃效果好等优势,广泛用于电子、家具和建筑材料等产品中[1]。作为添加型阻燃剂,PBDEs在使用过程中不可避免地逸散进入环境介质[2]。目前,在土壤、大气和水体等环境介质中均广泛检测到PBDEs[3-4]。作为一类持久性有机污染物,PBDEs具有化学性质稳定、蒸气压低、生物蓄积性强、脂溶性大以及生物毒性高等性质,当其进入水体时,主要吸附或者富集在水体中的悬浮颗粒、沉积物或者生物体内[5]。根据《斯德哥尔摩公约》,使用量最大的BDE-209已经被禁用,但是仍留下比较严重的环境问题。
水体中的PBDEs可以在水生生物体内富集,通过食物链传递产生生物放大效应,最终富集到人体中,对人体产生毒害作用,引起人支气管上皮细胞的细胞毒性和遗传毒性作用[6]。PBDEs在生物体内可进行转化和代谢,从而使PBDEs的性质发生改变[7]。清楚认识PBDEs在水体中的分布、转化及其生物效应,有利于评价水体中PBDEs的环境风险并预测其迁移行为,为今后水体中PBDEs污染的处理提供科学依据。本文对PBDEs及其衍生物在水体中的分布、转化和生物效应等方面研究进行概述,为深入认识PBDEs在水环境中的行为及风险提供参考依据。
水体环境包括表层水、沉积物以及水生生物等,表层水的流动性较大,沉积物的流动性较小,所以PBDEs在表层水中的扩散性大于在沉积物中的扩散性,且PBDEs具有较强的疏水性,导致沉积物中PBDEs的浓度普遍大于表层水[8]。一般认为,沉积物是PBDEs的“汇”,是水中PBDEs的“源”。研究PBDEs在水体中分布时,对沉积物中PBDEs浓度研究可以有效地评价水体的污染程度。根据水体的位置情况,将水体分为淡水水体、地下水水体和海洋。下面将对这3种不同水体中PBDEs及其衍生物的污染情况进行概述。
淡水水体包括一些湖泊、江河,是以淡水为主构成的水体,与人类健康息息相关。在不同地区的湖泊、江河中都能检测PBDEs的存在,且具有不同浓度和组成特征。在工业区和低工业区都存在PBDEs污染,但工业区使用PBDEs的量和频率远大于低工业区,造成了工业区水体中PBDEs的污染程度远大于低工业区[9]。工业区水体中PBDEs污染物的含量和种类可以反映出该工业地区的发展情况。随着地区工业化程度的增高,附近湖泊、江河的沉积物中PBDEs的含量增高。如,在练江的贵屿段,由于电子拆卸和一些其他的工业的存在,导致其沉积物中PBDEs污染较为严重,其浓度范围为7 470~193 000 ng·g-1 (干质量),远高于练江上游水源沉积物中的PBDEs含量(10.2~2 120 ng·g-1),且BDE-209的相对丰度最大,占总量的50.3%[10]。在深圳茅洲河流域的电子废弃物站点检测到PBDEs浓度范围为230~36 392 ng·g-1,其中BDE-209占据总PBDEs的96%以上[11]。在韩国石蛙人工湖的辛吉尔溪附近集中了大量的化工厂和电气厂,导致该水体PBDEs含量高达18 700 ng·g-1,远高于附近其他水体[12]。英国的泰晤士河是工业、港口、污水处理厂和发电站的排放点,其表层沉积物中检测出多种PBDEs,其中BDE-209占全部PBDEs的95%,且浓度为0.03~540 ng·g-1[13]。根据沉积物中PBDEs含量和种类可知,工业区的PBDEs的污染十分严重,且都主要以BDE-209单体为主,说明BDE-209在禁用之前被广泛使用。
在一些低工业地区,PBDEs也被频繁检出。通过检测低工业区的PBDEs污染物的浓度和种类,可以反映当地地区的工业发展和变迁情况,以及PBDEs的长距离迁移情况。在墨西哥查帕拉湖的表层沉积物检测到PBDEs的含量为0.2~2.5 ng·g-1 [14]。对中国台湾地区7个地表水样品进行检测发现PBDEs的含量为0.030~1.021 ng·L-1,且BDE-209占总PBDEs的90%[15]。朱冰清等[16]于2020年在太湖表面沉积物检测出PBDEs浓度范围为16.7~765 ng·g-1,其中BDE-47的含量最高,平均值可达到264 ng·g-1,其次是BDE-17和BDE-28。路风辉等[17]对珠江三角洲地区的沉积物钻孔检测了PBDEs的浓度和组成特征,研究发现BDE-209含量范围为14.4~588 ng·g-1,占总PBDEs浓度70.7%左右。除了工业水流带入PBDEs污染外,影响低工业区水体PBDEs污染水平的另外2个主要原因是季节降水的变化和污水处理不完全。通过检测黄河水不同时期PBDEs含量和组成发现枯水期PBDEs浓度低于丰水期时的浓度,且BDE-209占总的PBDEs含量的44.6%~90.3%,在枯水期和丰水期BDE-209的浓度范围分别为0~2.99 ng·L-1和0.713~13.5 ng·L-1[18]。邱鹏等[19]对白洋淀污水处理厂进出的湖水进行检测,白洋淀的湖水总PBDEs含量为38.7~216.3 ng·L-1,进入污水处理厂的湖水中PBDEs污染主要是以BDE-209为主,其次是BDE-100,但经污水处理厂处理后湖水中几乎没有检测出BDE-209,主要是以BDE-47为主。Lee和Kim[20]针对韩国两大污水处理厂的处理工艺过程进行研究,发现BDE-209的降解效率大于BDE-45,在污水处理厂处理之后的水中检测到总PBDEs的含量范围为1.59~2.34 ng·L-1,且以低溴代联苯醚为主要单体。经过污水处理厂处理后,PBDEs污染的组成会发生一定的改变,认识这一改变过程有利于进一步研究水体中PBDEs的生态影响。
总的来说,在淡水水体中,工业区PBDEs的含量远高于低工业区,且两者PBDEs的单体组成特征存在较大的差异,工业区主要是以BDE-209为主,而在低工业区BDE-209在总的PBDEs占比大幅度下降,且有些地区呈现出以低溴代的PBDEs为主的现象。产生这个现象的主要原因是十溴代联苯醚(Beca-BDE)易于脱溴产生各种低溴代联苯醚,从而导致Beca-BDE含量降低和低溴代联苯醚的含量增高。尽管Beca-BDE已经禁用,淡水水体中PBDEs的污染水平仍然不容忽视。通过研究可发现,随着雨水量的增多,PBDEs浓度有所下降;经过污水处理厂处理之后的污水中几乎不含有BDE-209,但各种低溴代PBDEs的含量有所增高。了解并清楚认识PBDEs在全球范围水体中的分布以及其影响因素,是有助于推动水体中PBDEs污染的科学化治理。
地下水也是人类重要的水资源,是一些偏远地区的主要饮用水来源,并可用于农田灌溉。土壤中PBDEs污染物的入渗作用是地下水中PBDEs的主要来源之一,因此,地下水中PBDEs污染的空间分布特征主要受填埋场垃圾渗出液和农田污水灌溉造成的PBDEs面源污染影响。在加拿大安大略省渥太华市的农业基地钻孔检测到2 m深地下水中BDE-209和BDE-153的平均含量分别为5.4 ng·L-1和0.16 ng·L-1[21]。针对爱尔兰的10个垃圾填埋场附近地下水进行检测,发现PBDEs含量范围为6.08~27.97 ng·L-1,其中BDE-209检出率为100%且含量最高(5.8~26 ng·L-1)[22]。地下水中PBDEs污染物浓度受到季节和雨水的影响,在雨水充沛时,由于地表水水量的增加而稀释了PBDEs浓度。检测南非2个具有代表性的填埋场附近地下水的PBDEs浓度,在夏季2个地方总PBDEs浓度分别为0.153 ng·L-1和0.293 ng·L-1,冬季分别为0.045 ng·L-1和0.449 ng·L-1[23]。2006年和2007年的8月和10月检测加拿大泰河流域地下水的PBDEs含量,发现由于10月份雨水充沛,在这段时间里地下水中PBDEs含量(4.8 ng·L-1和5.7 ng·L-1)显著低于8月份的PBDEs含量(13.1 ng·L-1和20.9 ng·L-1)[24]。目前对地下水污染的重视程度不如湖泊、河流等地表水,相关报道相对较少。通过上述PBDEs在地下水中的污染数据可知,在一些地区,特别是工业区、填埋场等,地下水中PBDEs的含量偏高,且都是以BDE-209为主,说明了在这些地区受到了严重的PBDEs污染,作为人类重要水源之一,地下水中PBDEs污染水平及风险应受到广泛关注。
海水是地球最丰富的水资源,然而,在海水中能够广泛检测到各种PBDEs物质,足以证实PBDEs对水生生态系统造成的危害是不可忽视的。海水中PBDEs污染物的来源可分为近源和远源,近源主要是指地表径流的流入,远源包括PBDEs的迁移和大气中PBDEs的沉降[25]。沿岸海域PBDEs污染物的来源主要是近源,且PBDEs污染与工业化程度成正相关[26]。在一些沿岸海域水的交换能力较差,可以富集较高浓度的PBDEs,且也呈现出以BDE-209单体为主的现象。如,莱州湾东部由于农业、工业发达,而遭受了较多的陆源污染,导致在海水和沉积物中检测到大量PBDEs污染物,其总的浓度范围分别为290~760 pg·L-1和31.37~44.39 ng·g-1,且都是以BDE-209为主[27]。姚文君等[28]通过对环渤海沿岸的表面沉积物进行检测,发现10种PBDEs,其总浓度范围为0.446~26.8 ng·g-1,其中BDE-209的平均丰度为90.5%。黄海北部4个海湾中BDE-209的含量范围为0.05~7.82 ng·g-1 [29]。远海地区PBDEs污染物的来源主要是远源,北半球的陆地面积比南半球的大,且工业也比南半球发达,造成了南北半球PBDEs污染程度不同[30]。大西洋是跨南北半球的大洋,通过对大西洋的海水进行检测,发现BDE-47、BDE-99、BDE-100和BDE-85含量较多,且北半球的BDE-47和BDE-99的平均总含量为0.3 pg·L-1显著高于南半球(0.04 pg·L-1),数据表明北半球比南半球污染更加严重[31]。总的来说,沿岸海域的污染程度远大于远海地区,说明人类活动导致地表径流中含有较高的PBDEs,对海洋水生生物是一种潜在的威胁。同时,沿岸海域也是人类水产养殖的集中地,PBDEs的污染也将通过海洋水产品被人类摄入,进而对人体产生危害。
水体中PBDEs可通过太阳辐射、水体中氧自由基等进行非生物转化,也可通过水生生物或者沉积物中微生物进行生物转化。PBDEs最常见的转化途径是脱溴成为低溴联苯醚和氧化成羟氧化物或者甲氧化物,有研究显示,羟氧化或甲氧化这2种PBDEs代谢物的毒性大于其母体化合物的毒性[32]。水体中PBDEs的非生物转化主要集中在表层水中,且主要产生低溴代联苯醚或者开环生成其他衍生物[33]。在表层水中PBDEs的含量较低,且不稳定因素影响较大,导致水体中PBDEs通过非生物转化的量极少[34]。生物转化是水体中PBDEs的主要转化途径,下面将详细叙述PBDEs在水生动物和浮游植物以及微生物作用下的生物转化。了解并认识水体中PBDEs的转化过程有利于全面评估PBDEs及其代谢物对生态环境带来的危害和风险。
水生动物在维持水体生态平衡中扮演着重要的角色,且在其体内存在多种酶和脂质等物质,能够代谢转化和富集PBDEs及其代谢物。PBDEs能在各种水生生物体进行转化,且雌性生物通过生殖过程可将PBDEs转移至后代体内中。用含有BDE-209和BDE-99的饲料喂养比目鱼362 d后可以检测出未加入的PBDEs,比如BDE-49、BDE-101等,且在其产的卵中检测到PBDEs[35]。目前从无脊椎到高营养级水生生物中均可检测到PBDEs及其代谢物,包括一些大型水生动物如海豚和鲸类[36-37]。肝脏是物质代谢的主要场所,PBDEs在肝脏内可通过脱溴和氧化等途径转化变成低溴联苯醚和代谢物,且在一些生物体内主要以脱溴代谢为主。Munschy等[38]通过幼鱼在特定PBDEs中的暴露实验证实了BDE-99、BDE-153和BDE-209的生物脱溴转化,且证明了BDE-99转化为BDE-49的脱溴途径。通过鲫鱼的肝脏离体实验证实了PBDEs的脱溴途径,由于deca-BDEs分子量大和位阻大,导致与酶反应活性低,从而五溴二苯醚(penta-BDEs)较deca-BDEs在肝脏内更容易脱溴,penta-BDEs和deca-BDEs转化率分别为165 pmol·h-1·mg-1 (蛋白质)和4.7 pmol·h-1·mg-1 (蛋白质) [39]。Falandysz等[40]检测了从波罗的海和北大西洋鱼中提取的鱼肝油和鱼肝油产品的PBDEs含量,发现在鱼肝油中∑17PBDEs浓度范围为9 900~415 000 pg·g-1 (湿质量),且在所有样品中存在90%的四溴二苯醚(tetra-BDEs)和penta-BDEs。由于penta-BDEs在禁用之前被广泛使用,且penta-BDEs在生物体内易于脱溴和氧化,导致水生生物体内的PBDEs主要以tetra-BDEs和penta-BDEs及其氧化产物为主,其中BDE-47及其氧化物占主导地位。在拉脱维亚境内采集的淡水贻贝中检测到总PBDEs含量为11.3~193.2 pg·g-1(湿质量),tetra-BDEs占总PBDEs的23%[41]。Sun等[42]检测北极和南极地区一些无脊椎动物脂质和肌肉中的PBDEs及其代谢物含量,发现PBDEs通过生物转化形成多种PBDEs及其代谢物,其中BDE-47在北极和南极生物体内分别占∑7PBDEs的52.11%和39.8%,6-MeO-BDE-47和6-OH-BDE-47分别在∑14MeO-PBDEs和∑14OH-PBDEs中占76%和82%。在一些生物体内氧化产物浓度高于PBDEs的浓度,美国市场上贝壳类水生生物中∑PBDEs、∑OH-PBDEs和∑MeO-PBDEs的浓度分别为521.5、2 005和570.3 pg·g-1(湿质量)[43]。生物体内PBDEs代谢物会通过生物排泄作用释放到环境中,这将导致环境中PBDEs的代谢物浓度增加,所以必须重视PBDEs的代谢物带来的环境影响。
在水体环境中,由于不同物种具有不同的生活习性和代谢频率,导致在体内积累的PBDEs及其代谢物具有不同的浓度和特征[44]。有研究报道,底栖生物较其他水生生物体内含有更高的PBDEs及其代谢物,对环渤海地区多种无脊椎动物和鱼类进行检测,发现蛤蜊虫体内较虾等其他无脊椎动物含有更高的∑OH-PBDEs和∑MeO-PBDEs浓度,分别达到63 000 pg·g-1 (脂质量)和21 000 pg·g-1 (脂质量)[45]。对于不同物种的鱼类,由于物种差异导致体内PBDEs及其代谢物含量和组成存在较大的差异。Zhou等[46]对上海淀山湖11种鱼类进行检测,由于鲤鱼和鲫鱼脱溴能力强而未检出BDE-99,而其脱溴产物BDE-47占∑7PBDEs的45%~57%,但黄颡鱼中能够检测出13%的BDE-99。由于物种差异,不同物种对PBDEs具有不同的行为特征,全面认识这一特征对开展PBDEs及其代谢物的风险评估有重大意义。
在水环境中,浮游植物和微生物分别存在与表层水和底泥沉积物中,且都对PBDEs具有转化能力。小球藻体内BDE-209能够脱溴为BDE-153、BDE-99、BDE-47和BDE-28[47]。在海洋中的OH-PBDEs和MeO-PBDEs是藻类的天然产物,Malmvärn等[48]检测出波罗的海的红藻和蓝藻中含有6-OH-PBDEs和6-MeO-PBDEs。PBDEs可在藻类等浮游植物中转化为脱溴还原产物,也可在底泥中进行降解代谢转化为其他低溴同系物。自然衰减法是处理沉积物中PBDEs污染的最为推崇的方法,是指在自然环境中的菌种或者物理条件下,无需人为干扰,污染物发生降解、吸附等生化反应而降低PBDEs浓度[49]。PBDEs可在好氧或厌氧微生物的作用下脱溴,好氧梭形乳杆菌可对沉积物中BDE-209脱溴而产生BDE-3[50],好氧细菌对BDE-47的降解符合一级动力学[51]。在中国台湾地区南部河流沉积物中分离出假单胞菌和芽孢杆菌这2种降解BDE-15的优势菌,且鼠李糖能加速BDE-15的好氧降解[52]。底泥中的厌氧菌群对除BDE-47以外的PBDEs的降解不到20%,而BDE-47浓度在培养42 d后显著下降,且通过变性梯度凝胶电泳检测发现PBDEs改变了细菌群落的组成,且程度随PBDE同系物的不同而不同[53]。对比牲畜废水和虾池废水,BDE-47在城市污水中脱溴降解速度较快,可降解为BDE-7、BDE-17和BDE-28[54]。生物法降解沉积物中的PBDEs一直以来是研究热点,清楚认识和了解底泥中微生物对PBDEs的作用有助于治理水环境中PBDEs污染。
PBDEs作为一种持久性有机污染物,对水体中水生生物存在一定的毒性效应,如抑制生物生长、产生生殖毒性和神经毒性等。PBDEs的羟基化和甲氧基化代谢产物在水体环境或者生物体内被检出,其对生物的毒性也不可忽视。目前,对PBDEs及其衍生物的水生生物毒性研究主要集中于生殖毒性,其次是神经毒性。PBDEs及其衍生物的混合毒性是当前研究的热点问题之一。3种商业PBDEs(deca-BDEs、octa-BDEs、penta-BDEs)和BDE-47是在水体中检出频率高和浓度高的PBDEs,其毒性大小与苯环上的溴取代基的数量成负相关[55]。6-OH-BDE-47和6-MeO-BDE-47是BDE-47的2种代谢产物,在水环境中检出频率较高,相对于其他PBDEs代谢物研究较多[56]。探究PBDEs及其衍生物的生物效应有助于全面了解其对生物的毒性作用,从而有利于对水生生态系统进行风险评估。
PBDEs作为一种内分泌干扰物,在低剂量水平即可对生物的生殖造成不可挽回的损伤,因此其生殖毒性研究较多。PBDEs及其代谢物对水生生物的胚胎发育和生殖系统产生毒副作用,导致生物繁殖力下降,基本表现为胚胎发育受损和产卵数量减少。BDE-47、BDE-99和BDE-209在0.5 μg·L-1的浓度下即可使斑马鱼胚胎产生蛋黄和心包水肿、尾部和头部畸形等亚急性损伤[57]。研究发现,斑马鱼受精后,将其暴露于BDE-47溶液72 h,斑马鱼幼鱼的肠下血管面积和血管化卵黄面积显著减少[58]。褶皱臂尾轮虫在暴露于BDE-47溶液后出现卵巢受损、繁殖率减低的现象,且呈现出与暴露时间和浓度的依赖性[59]。在暴露于环境水平的BDE-47溶液中时,甲履螺的胚胎发育和繁殖会受到损伤,以及其性成熟时间延长[60]。PBDEs对雌性水生生物具有生殖毒性外,对雄性水生生物也能产生生殖毒性。有研究表明,雄性斑马鱼在暴露于BDE-47溶液21 d后,与雌性斑马鱼之间的追逐和性关联行为受到抑制[61]。除此之外,BDE-47还能破坏蝌蚪的性腺发育,且在雄性蝌蚪暴露于BDE-47后性腺雌性化水平提高[62]。PBDEs的代谢物也同样具有生殖毒性,且与PBDEs引起的毒性现象是类似的。暴露于6-OH-BDE-47和6-diOH-BDE-47的受精斑马鱼胚胎存活率低,并出现幼鱼脊柱弯曲、鱼鳔发育不完全以及生长受到抑制的情况,且6-OH-BDE-47的毒性作用大于6-diOH-BDE-47[63]。由于在某些地方,特别是工业区,在环境水平浓度下即可对生物产生生殖毒性,因此PBDEs及其衍生物污染物的生殖毒性是受到广泛关注的毒性之一。
PBDEs除了具有生殖毒性外,还具有神经毒性、血管毒性、免疫毒性和细胞毒性等其他毒性。PBDEs及其衍生物的神经毒性和血管毒性不利于发育期生物的神经系统和血管系统完善并导致水生生物行为异常。低浓度水平下,BDE-47能使斑马鱼产生焦虑行为,且相对于幼鱼,对成年斑马鱼的行为损伤更加严重[64-65]。单独使用6-OH-BDE-47和6-MeO-BDE-47均能抑制大型溞的摄食、破坏大型溞的神经系统和抗氧化系统[66]。penta-BDEs对甲状腺激素系统具有干扰作用,BDE-99通过下调trr和trβ基因来影响发育期斑马鱼的转录,进而干扰甲状腺激素的作用,导致斑马鱼发育迟缓[67]。6-OH-BDE-47还可影响斑马鱼体内甲状腺激素的调节系统,从而影响斑马鱼早期的生长发育[68]。PBDEs使水生生物的免疫系统遭受破坏,进而影响生物的生长发育。Huang等[69]通过体外细胞实验证明了暴露于PBDEs的海豚免疫系统受到损伤。贻贝暴露于BDE-47溶液后出现血细胞总数减少及其死亡率增加等免疫功能受损的情况[70]。除上述的毒性外,PBDEs还具有特殊的毒性。如,PBDEs可通过诱导细胞凋亡物质(Bcl2和caspase-9)的增加而对海洋中大型水生生物鲸鱼产生细胞毒性和遗传毒性[71],还可引起褶皱臂尾轮虫线粒体功能失调和乙酰胆碱酯酶活性下降,进而导致其摄食率减低和消化功能受阻[72]。PBDEs不仅对水生动物具有毒性作用,还对水生植物产生毒性效应。有研究表明,BDE-47能抑制三角褐指藻的细胞生长并破坏它的叶绿体结构,且这2种毒性效应与暴露浓度和时间呈线性关系[73]。BDE-47引起海链藻的生长抑制、氧化应激反应和氮的吸收率增加等现象,从而导致海链藻的生理生化特征发生改变[74]。
环境中的PBDEs的种类是错综复杂的,考虑单独PBDEs对生物的毒性作用不能真实反映PBDEs在水环境中的影响,因此还需研究PBDEs的复合毒性。BDE-47和BDE-209是环境中检出频率高和浓度较高的2种PBDEs同系物,这2种PBDEs的联合毒性与单独PBDEs的毒性作用是不同的。相对于BDE-47和BDE-99的单个毒性,BDE-47联合BDE-99使大型溞的摄食抑制作用加强而抗氧化应激反应减少[75]。与单独使用BDE-209或BDE-47相比,2种PBDEs同系物联合使用时,大型溞的心跳频率显著增加并使胆碱酯酶的活性显著降低[76]。将大型溞分别暴露于低浓度的BDE-47与6-OH-BDE-47或与6-MeO-BDE-47的混合溶液,会出现摄食率增加的现象,但暴露于三元混合溶液时,大型溞产生氧化应激反应,摄食率以及乙酰胆碱酯酶活性均降低[66]。PBDEs的混合毒性与单独的毒性具有较大的差别,2种及以上的PBDEs混合时,可能出现拮抗作用而降低毒性,也可能出现协同作用而增强毒性,复合毒性比单个毒性更能反映出水环境中污染物的潜在风险。
总的来说,通过对水环境中PBDEs的分布、转化和生物效应的概述可发现,PBDEs在淡水、地下水和海洋中都广泛分布,且在工业区附近造成了较大的污染。在水环境中PBDEs的组成特征是以BDE-209为主,其次是BDE-99和BDE-47。水环境中的PBDEs代谢物主要来自于水生生物、浮游植物和微生物自身代谢,主要为脱溴产物和氧化产物,PBDEs通过生物转化作用使环境中PBDEs类污染物成分越来越复杂。PBDEs及其衍生物对水环境中的各种生物都具有毒性,且PBDEs及其衍生物的联合作用与单独作用存在较大差别,需要引起足够的重视。对水生动物来说,PBDEs主要影响其生长繁殖、胚胎的存活和发育,还可产生神经毒性和细胞毒性。
基于目前对PBDEs及其衍生物的研究,在今后的相关工作中可以对以下几方面进一步开展研究:(1)沉积物中微生物对PBDEs可进行转化代谢,从而降低环境中的PBDEs的浓度,但是对于微生物转化PBDEs的机理还不清楚,可以从基因水平对其转化机理进行研究,以便开展PBDEs污染的修复工作;(2)OH-PBDEs和MeO-PBDEs是PBDEs的2类主要代谢物,但是在生物体内的转化机理还未明确,只能够通过检测代谢物的存在而证明,今后可探究这2种代谢物在生物体内的主要存在部位以及生物体内酶对PBDEs转化的影响来佐证转化机理;(3)PBDEs对水生生物的毒性效应主要停留在水生动物,而对水生植物和微生物的毒性效应研究较少,以及水生植物体内的PBDEs及其代谢物也知之甚少,今后在关注PBDEs对水生动物影响的同时,还需要关注对水生植物及微生物的影响;(4)在水环境中,PBDEs及其代谢物的组成较为复杂,对于PBDEs及衍生物之间的相互作用以及复合毒性研究太少,复合PBDEs影响水生生物的机制尚不明确,需要增加对PBDEs及衍生物对水生生物复合毒性及作用机制的研究。
[1] 刘杏韵, 陈李财. 多溴联苯醚的分布及发展[J]. 广东化工, 2018, 45(10): 156-157
Liu X Y, Chen L C. Distribution and development of polybrominated diphenyl ethers [J]. Guangdong Chemical Industry, 2018, 45(10): 156-157 (in Chinese)
[2] Lee H J, Jeong H J, Jang Y L, et al. Distribution, accumulation, and potential risk of polybrominated diphenyl ethers in the marine environment receiving effluents from a sewage treatment plant [J]. Marine Pollution Bulletin, 2018, 129(1): 364-369
[3] Li M F, Zhou Y X, Wang G S, et al. Evaluation of atmospheric sources of PCDD/Fs, PCBs and PBDEs around an MSWI plant using active and passive air samplers [J]. Chemosphere, 2021, 274: 129685
[4] Chou T H, Ou M H, Wu T, et al. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan [J]. Chemosphere, 2019, 236: 124117
[5] Ju T, Ge W, Jiang T, et al. Polybrominated diphenyl ethers in dissolved and suspended phases of seawater and in surface sediment from Jiaozhou Bay, North China [J]. Science of the Total Environment, 2016, 557-558: 571-578
[6] Montalbano A M, Albano G D, Anzalone G, et al. Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells [J]. Chemosphere, 2020, 245: 125600
[7] Cruz R, Marmelo I, Monteiro C, et al. The occurrence of polybrominated diphenyl ethers and their metabolites in Portuguese River biota [J]. Science of the Total Environment, 2020, 713: 136606
[8] 都烨. 多溴联苯醚在不同区域沉积物中的分布特征[J]. 蚌埠学院学报, 2019, 8(5): 26-32
Du Y. Temporal trends of polybrominated diphenyl ethers in the sediment cores from different areas [J]. Journal of Bengbu University, 2019, 8(5): 26-32 (in Chinese)
[9] Ma J, Qiu X H, Zhang J L, et al. State of polybrominated diphenyl ethers in China: An overview [J]. Chemosphere, 2012, 88(7): 769-778
[10] 宋爱民, 李会茹, 刘合欢, 等. 练江沉积物中多溴联苯醚的污染特征、来源和潜在生态风险研究[J]. 环境科学学报, 2020, 40(4): 1309-1320
Song A M, Li H R, Liu H H, et al. Study on the pollution characteristics, sources and potential ecological risk of polybrominated diphenyl ethers in sediments from the Lian River [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1309-1320 (in Chinese)
[11] Zhou H C, Tam N F Y, Cheung S G, et al. Contamination of polybrominated diphenyl ethers (PBDEs) in watershed sediments and plants adjacent to e-waste sites [J]. Journal of Hazardous Materials, 2019, 379: 120788
[12] Moon H B, Choi M, Yu J, et al. Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea [J]. Chemosphere, 2012, 88(7): 837-843
[13] Ganci A P, Vane C H, Abdallah M A E, et al. Legacy PBDEs and NBFRs in sediments of the tidal River Thames using liquid chromatography coupled to a high resolution accurate mass Orbitrap mass spectrometer [J]. Science of the Total Environment, 2019, 658: 1355-1366
[14] Ontiveros-Cuadras J F, Ruiz-Fernández A C, Sanchez-Cabeza J A, et al. Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake [J]. Journal of Hazardous Materials, 2019, 368: 264-273
[15] Trinh M M, Tsai C L, Chang M B. Characterization of polybrominated diphenyl ethers (PBDEs) in various aqueous samples in Taiwan [J]. Science of the Total Environment, 2019, 649: 388-395
[16] 朱冰清, 高占啟, 王骏飞, 等. 太湖主要入湖河流多溴联苯醚和有机磷阻燃剂污染与风险评价[J]. 环境监控与预警, 2020, 12(5): 124-131
Zhu B Q, Gao Z Q, Wang J F, et al. Contamination level and ecological risk assessment of polybrominated diphenyl ethers (PBDEs) and organophosphorus flame retardants (OPFRs) in main inflow rivers of Taihu Lake [J]. Environmental Monitoring and Forewarning, 2020, 12(5): 124-131 (in Chinese)
[17] 路风辉, 陈满英, 陈纪文, 等. 珠江三角洲沉积物钻孔中多溴联苯醚的垂直变化规律研究[J]. 环境科学学报, 2014, 34(9): 2362-2366
Lu F H, Chen M Y, Chen J W, et al. Vertical distributions of polybrominated diphenyl ethers of sediment core in the Pearl River Delta [J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2362-2366 (in Chinese)
[18] Pei J, Yao H, Wang H, et al. Polybrominated diphenyl ethers (PBDEs) in water, surface sediment, and suspended particulate matter from the Yellow River, China: Levels, spatial and seasonal distribution, and source contribution [J]. Marine Pollution Bulletin, 2018, 129(1): 106-113
[19] 邱鹏, 刘芃岩, 王晓冰, 等. 白洋淀入湖河流水体中多溴联苯醚的浓度分布特征[J]. 环境污染与防治, 2019, 41(1): 81-84, 88
Qiu P, Liu P Y, Wang X B, et al. Concentration distribution characteristics of polybrominated diphenyl ethers in the water flows into Baiyangdian Lake [J]. Environmental Pollution & Control, 2019, 41(1): 81-84, 88 (in Chinese)
[20] Lee H J, Kim G B. Removal rate and releases of polybrominated diphenyl ethers in two wastewater treatment plants, Korea [J]. Ocean Science Journal, 2017, 52(2): 193-205
[21] Gottschall N, Topp E, Edwards M, et al. Brominated flame retardants and perfluoroalkyl acids in groundwater, tile drainage, soil, and crop grain following a high application of municipal biosolids to a field [J]. Science of the Total Environment, 2017, 574: 1345-1359
[22] Harrad S, Drage D S, Sharkey M, et al. Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland [J]. Science of the Total Environment, 2020, 705: 135834
[23] Sibiya I V, Olukunle O I, Okonkwo O J. Seasonal variations and the influence of geomembrane liners on the levels of PBDEs in landfill leachates, sediment and groundwater in Gauteng Province, South Africa [J]. Emerging Contaminants, 2017, 3(2): 76-84
[24] He W, Liu W X, Qin N, et al. Impact of organic matter and meteorological factors on the long-term trend, seasonality, and gas/particle partitioning behavior of atmospheric PBDEs [J]. Science of the Total Environment, 2019, 659: 1058-1070
[25] Li J, Li Q L, Gioia R, et al. PBDEs in the atmosphere over the Asian marginal seas, and the Indian and Atlantic Oceans [J]. Atmospheric Environment, 2011, 45(37): 6622-6628
[26] 唐学玺, 张璟, 刘泳, 等. 多溴联苯醚对海洋环境和海洋生物的影响[J]. 水生生物学报, 2014, 38(1): 171-179
Tang X X, Zhang J, Liu Y, et al. Effects of polybrominated diphenyl ethers on marine environment and organisms [J]. Acta Hydrobiologica Sinica, 2014, 38(1): 171-179 (in Chinese)
[27] 牟亚南, 王金叶, 张艳, 等. 莱州湾东部海域多溴联苯醚的污染特征及生态风险评价[J]. 环境化学, 2019, 38(1): 131-141
Mou Y N, Wang J Y, Zhang Y, et al. Contamination characteristics and ecological risk assessment of polybrominated diphenyl ethers in the eastern region of Laizhou Bay [J]. Environmental Chemistry, 2019, 38(1): 131-141 (in Chinese)
[28] 姚文君, 薛文平, 国文, 等. 环渤海近岸海域表层沉积物及底栖生物中PBDEs的赋存特征及富集行为[J]. 生态毒理学报, 2016, 11(2): 413-420
Yao W J, Xue W P, Guo W, et al. Occurrence and bioaccumulation of polybrominated diphenyl ethers (PBDEs) in surficial sediment and benthic organism in the Bohai Sea [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 413-420 (in Chinese)
[29] Zhen X M, Tang J H, Xie Z Y, et al. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China [J]. Environmental Pollution, 2016, 213: 386-394
[30] Li Z, Li Y, Li X. Comparative analysis of pollutants in the sediments between the southern and northern river [J]. Advanced Materials Research, 2012, 1793: 2084-2088
[31] Lohmann R, Klanova J, Kukucka P, et al. Concentrations, fluxes, and residence time of PBDEs across the tropical Atlantic Ocean [J]. Environmental Science & Technology, 2013, 47(24): 13967-13975
[32] Choo G, Lee I S, Oh J E. Species and habitat-dependent accumulation and biomagnification of brominated flame retardants and PBDE metabolites [J]. Journal of Hazardous Materials, 2019, 371: 175-182
[33] 温泉, 张俊江, 关淼, 等. 环境中多溴联苯醚(PBDEs)的代谢转化研究现状[J]. 环境监控与预警, 2012, 4(4): 34-41
Wen Q, Zhang J J, Guan M, et al. Transformation and metabolism of polybrominated diphenyl ethers (PBDEs) in environment [J]. Environmental Monitoring and Forewarning, 2012, 4(4): 34-41 (in Chinese)
[34] 郭楠楠, 孟顺龙, 陈家长. 多溴联苯醚在环境中的残留及毒理学效应研究进展[J]. 中国农学通报, 2019, 35(25): 159-164
Guo N N, Meng S L, Chen J Z. Polybrominated biphenyl ethers: Residual in the environment and research progress on toxicological effects [J]. Chinese Agricultural Science Bulletin, 2019, 35(25): 159-164 (in Chinese)
[35] Munschy C, Bely N, Héas-Moisan K, et al. Tissue-specific distribution and maternal transfer of polybrominated diphenyl ethers (PBDEs) and their metabolites in adult common sole (Solea solea L.) over an entire reproduction cycle [J]. Ecotoxicology and Environmental Safety, 2017, 145: 457-465
[36] Méndez-Fernandez P, Taniguchi S, Santos M C O, et al. Contamination status by persistent organic pollutants of the Atlantic spotted dolphin (Stenella frontalis) at the metapopulation level [J]. Environmental Pollution, 2018, 236: 785-794
[37] Pinzone M, Budzinski H, Tasciotti A, et al. POPs in free-ranging pilot whales, sperm whales and fin whales from the Mediterranean Sea: Influence of biological and ecological factors [J]. Environmental Research, 2015, 142: 185-196
[38] Munschy C, Héas-Moisan K, Tixier C, et al. Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part 1. Bioaccumulation and elimination kinetics of individual congeners and their debrominated metabolites [J]. Environmental Pollution, 2011, 159(1): 229-237
[39] Luo Y L, Luo X J, Ye M X, et al. Species-specific and structure-dependent debromination of polybrominated diphenyl ether in fish by in vitro hepatic metabolism [J]. Environmental Toxicology and Chemistry, 2017, 36(8): 2005-2011
[40] Falandysz J, Smith F, Steel Z, et al. PBDEs in cod (Gadus morhua) liver products (1972-2017): Occurrence and human exposure [J]. Chemosphere, 2019, 232: 63-69
[41] Ikkere L E, Perkons I, Sire J, et al. Occurrence of polybrominated diphenyl ethers, perfluorinated compounds, and nonsteroidal anti-inflammatory drugs in freshwater mussels from Latvia [J]. Chemosphere, 2018, 213: 507-516
[42] Sun H Z, Li Y M, Hao Y F, et al. Bioaccumulation and trophic transfer of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogues in polar marine food webs [J]. Environmental Science & Technology, 2020, 54(23): 15086-15096
[43] Cade S E, Kuo L J, Schultz I R. Polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in seafood obtained from Puget Sound, WA [J]. Science of the Total Environment, 2018, 630: 1149-1154
[44] Yao B, Luo Z R, Zhi D, et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review [J]. Journal of Hazardous Materials, 2021, 403: 123674
[45] Liu Y W, Liu J Y, Yu M, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure [J]. Environmental Pollution, 2018, 233: 604-611
[46] Zhou Y H, Chen Q F, Du X Y, et al. Occurrence and trophic magnification of polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in freshwater fish from Dianshan Lake, Shanghai, China [J]. Environmental Pollution, 2016, 219: 932-938
[47] Lv M C, Tang X X, Zhao Y R, et al. The toxicity, bioaccumulation and debromination of BDE-47 and BDE-209 in Chlorella sp. under multiple exposure modes [J]. Science of the Total Environment, 2020, 723: 138086
[48] Malmvärn A, Zebühr Y, Kautsky L, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo- p-dioxins in red alga and cyanobacteria living in the Baltic Sea [J]. Chemosphere, 2008, 72(6): 910-916
[49] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193
Li Y J, Wang S J, Zhang M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution [J]. China Environmental Science, 2018, 38(3): 1185-1193 (in Chinese)
[50] Yang C W, Huang H W, Chang B V. Microbial communities associated with anaerobic degradation of polybrominated diphenyl ethers in river sediment [J]. Journal of Microbiology, Immunology and Infection, 2017, 50(1): 32-39
[51] Ti Q Q, Gu C G, Cai J, et al. Understanding the role of bacterial cellular adsorption, accumulation and bioavailability regulation by biosurfactant in affecting biodegradation efficacy of polybrominated diphenyl ethers [J]. Journal of Hazardous Materials, 2020, 393: 122382
[52] Huang H W, Chang B V, Cheng C H. Biodegradation of dibromodiphenyl ether in river sediment [J]. International Biodeterioration & Biodegradation, 2012, 68: 1-6
[53] Yen J H, Liao W C, Chen W C, et al. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment [J]. Journal of Hazardous Materials, 2009, 165(1-3): 518-524
[54] Chen J, Wang P F, Wang C, et al. How wastewater with different nutrient levels influences microbial degradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in anaerobic sediments [J]. Chemosphere, 2018, 211: 128-138
[55] 孔静静, 赵文杰, 周全法. 多溴联苯醚的污染现状及降解技术研究进展[J]. 再生资源与循环经济, 2020, 13(11): 25-30, 38
Kong J J, Zhao W J, Zhou Q F. Pollution status of polybrominated diphenyl ethers and research progress of degradation technology [J]. Recyclable Resources and Circular Economy, 2020, 13(11): 25-30, 38 (in Chinese)
[56] 程杰, 吕兑安. 羟基多溴联苯醚的污染现状及研究展望[J]. 化工设计通讯, 2020, 46(6): 250-251
Cheng J, Lv D A. Hydroxyl polybrominated diphenyl ethers pollution status and research prospects [J]. Chemical Engineering Design Communications, 2020, 46(6): 250-251 (in Chinese)
[57] Zezza D, Tait S, Della Salda L, et al. Toxicological, gene expression and histopathological evaluations of environmentally realistic concentrations of polybrominated diphenyl ethers PBDE- 47, PBDE-99 and PBDE-209 on zebrafish embryos [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109566
[58] Xing X M, Kang J M, Qiu J H, et al. Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2018, 203: 19-27
[59] Wang H, Tang X X, Sha J J, et al. The reproductive toxicity on the rotifer Brachionus plicatilis induced by BDE-47 and studies on the effective mechanism based on antioxidant defense system changes [J]. Chemosphere, 2015, 135: 129-137
[60] Po B H K, Chiu J M Y. Transgenerational impairments of reproduction and development of the marine invertebrate Crepidula onyx resulted from long-term dietary exposure of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) [J]. Environmental Pollution, 2018, 235: 730-738
[61] Huang Y, Zhu G H, Peng L, et al. Effect of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) on sexual behaviors and reproductive function in male zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2015, 111: 102-108
[62] Li J B, Li Y Y, Shen Y P, et al. 2,2’,4,4’-tetrabromodipheny ether (BDE-47) disrupts gonadal development of the Africa clawed frog (Xenopus laevis) [J]. Aquatic Toxicology, 2020, 221: 105441
[63] Zhang M T, Zhao F, Zhang J W, et al. Toxicity and accumulation of 6-OH-BDE-47 and newly synthesized 6,6’-diOH-BDE-47 in early life-stages of zebrafish (Danio rerio) [J]. Science of the Total Environment, 2021, 763: 143036
[64] Glazer L, Wells C N, Drastal M, et al. Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish [J]. NeuroToxicology, 2018, 66: 221-232
[65] Wang W T, Zhao X S, Ren X, et al. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage [J]. Aquatic Toxicology, 2020, 225: 105546
[66] Liu Y H, Guo R X, Tang S K, et al. Single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the feeding activity of Daphnia magna: From behavior assessment to neurotoxicity [J]. Chemosphere, 2018, 195: 542-550
[67] Yang J, Zhao H, Chan K M. Toxic effects of polybrominated diphenyl ethers (BDE 47 and 99) and localization of BDE-99-induced cyp1a mRNA in zebrafish larvae [J]. Toxicology Reports, 2017, 4: 614-624
[68] MacAulay L J, Chen A, Rock K D, et al. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor β [J]. Aquatic Toxicology, 2015, 168: 38-47
[69] Huang Y, Rajput I R, Sanganyado E, et al. Immune stimulation effect of PBDEs via prostaglandin pathway in pantropical spotted dolphin: An in vitro study [J]. Chemosphere, 2020, 254: 126717
[70] Jiang Y S, Tang X X, Sun T L, et al. BDE-47 exposure changed the immune function of haemocytes in Mytilus edulis: An explanation based on ROS-mediated pathway [J]. Aquatic Toxicology, 2017, 182: 58-66
[71] Rajput I R, Yaqoob S, Sun Y J, et al. Polybrominated diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell lines [J]. Environmental Pollution, 2021, 271: 116131
[72] Yang Y Y, Jian X Y, Tang X X, et al. Feeding behavior toxicity in the marine rotifer Brachionus plicatilis caused by 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47): Characteristics and mechanisms [J]. Chemosphere, 2021, 271: 129512
[73] Liu Q, Tang X X, Zhang X, et al. Evaluation of the toxic response induced by BDE-47 in a marine alga, Phaeodactylum tricornutum, based on photosynthesis-related parameters [J]. Aquatic Toxicology, 2020, 227: 105588
[74] Zhao Y R, Tang X X, Lv M C, et al. The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis [J]. Aquatic Toxicology, 2020, 229: 105669
[75] Zhao Y C, Wang Z L, Li D T, et al. Two PBDEs exposure inducing feeding depression and disorder of digestive and antioxidative system of Daphnia magna [J]. Ecotoxicology and Environmental Safety, 2019, 176: 279-287
[76] Xiong Q L, Shi Y J, Lu Y L, et al. Sublethal or not? Responses of multiple biomarkers in Daphnia magna to single and joint effects of BDE-47 and BDE-209 [J]. Ecotoxicology and Environmental Safety, 2018, 164: 164-171
(Corresponding author), E-mail: cjqalga@163.com
#共同通讯作者(Co-corresponding author), E-mail: liuyanhua8.18@163.com