

范勇杰, 郑育毅, 王菲凤, 等. 基于 kintecus 模型的紫外/次氯酸降解 MC-LR 的自由基稳态浓度及反应动力学模拟[J]. 环境 工程学报, 2021, 15(8): 2598-2608.

FAN Yongjie, ZHENG Yuyi, WANG Feifeng, et al. Simulation of steady-state radical concentration and reaction kinetics of MC-LR degradation by UV/hypochlorous acid based on kintecus model [J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2598-2608.

基于 kintecus 模型的紫外/次氯酸降解 MC-LR 的自由基稳态浓度及反应动力学模拟

范勇杰1,2, 郑育毅1,2,3,4, 王菲凤1,2,3,4, 吴春山1,2,3,4, 孙启元1,2,3,4,*

1. 福建师范大学环境科学与工程学院, 福州 350007

2. 福建师范大学环境科学研究所, 福州 350007

3. 福建省污染控制与资源循环利用重点实验室, 福州 350007

4. 福建省高校城市废物资源化技术与管理工程研究中心, 福州 350007

第一作者:范勇杰(1998—),男,硕士研究生。研究方向:水污染控制。E-mail: fanyongjie123456@163.com *通信作者:孙启元(1986—),男,博士,副教授。研究方向:水污染控制。E-mail: minglei_2008@fjnu.edu.cn

摘 要 蓝藻代谢产生的微囊藻毒素-LR(MC-LR) 会污染饮用水源,并对人类健康构成威胁。紫外/次氯酸技术 能产生氯自由基(Cl·)和羟基自由基(HO·)等强氧化性物质来降解MC-LR。但该技术的最优参数尚不可知,已报 导的实验结果仅能提供部分参数、亟需通过数值模拟来确定更多重要参数。因此,采用 kintecus 化学动力模型 模拟了先前报导过的实验数据并对未报导数据进行了预测。结果表明,模型预测值与实验值的变化趋势一致, 误差在1.5倍以内。在 pH 为6时,紫外/次氯酸技术对 MC-LR 的降解效果最好,7 min 左右降解率可达到 90%。 HO·和 Cl·的稳态浓度分别为6.59×10⁻¹⁴ mol·L⁻¹和 1.22×10⁻¹⁴ mol·L⁻¹,与原文献实验结果较为吻合(7.89×10⁻¹⁴ mol·L⁻¹, 0.93×10⁻¹⁴ mol·L⁻¹)。在次氯酸添加量超过 40 µmol·L⁻¹之后,降解效果提升并不明显。当紫外光波长由 257.7 nm 增加到 301.2 nm 时,MC-LR 的表观降解速率常数由 5.07×10⁻³ s⁻¹下降到 3.84×10⁻³ s⁻¹,下降了 7.5%。而在波长为 257.7 nm、pH 由 6 提升至 8 时,表观降解速率常数由 5.07×10⁻³ s⁻¹下降到 3.84×10⁻³ s⁻¹,下降了 24%。因此,改变 pH 对降解效率的影响大于改变紫外光波长的情况。

关键词 kintecus 模型;紫外/次氯酸;微囊藻毒素-LR;稳态浓度;动力学

地表水中有害藻类爆发 (harmful algae bloom, HAB) 引发的水体污染已经引起了全球公众的关注^[1]。 微囊藻是淡水生态系统中分布最普遍的藻类之一,其代谢产物——微囊藻毒素-LR(Microcystin-LR, MC-LR) 会随着藻体的死亡和裂解而大量释放到水中^[2]。MC-LR 是强致癌物质,能够通过影响蛋白 磷酸酶活性等途径破坏肝脏细胞,引发癌变。因此,MC-LR 的存在会影响饮用水的水质安全,不 利于渔业和城市居民的身心健康^[3]。

基金项目:国家自然科学基金面上项目资助(52070044),国家自然科学基金青年项目资助(51509037)

外/过氧化氢 (UV/H₂O₂)、紫外/次氯酸 (UV/HCIO)、H₂O₂/O₃和基于 Fenton 的铁/H₂O₂体系可有效去除 MC-LR^[4]。相比于 UV/H₂O₂体系, UV/HCIO 体系在 pH 低于 7 时的降解效率更高,因此,部分水处 理厂已采用 UV/HCIO 替代 UV/H₂O₂^[5]。此外,由于 UV/HCIO 体系的余氯可以在饮用水处理中提供 多种消毒屏障,从而简化工艺^[6]。UV/HCIO 体系对 MC-LR 的降解途径包括:与 HCIO/CIO 的直接 反应;通过紫外线辐射的直接光解;活性自由基 (氯自由基 (Cl·)和羟基自由基 (HO·))等介导的间 接光解。HO·能够以接近扩散的速率与污染物反应,达到降解的目的。水中的其他化合物 (溶解的 有机物 (DOM) 和碳酸氢盐)可以与污染物竞争 HO·,但由于其具有快速反应活性,因此,依然可以 用于多种类型难降解化合物的降解^[7]。

Kintecus模型能够模拟高级氧化工艺反应,当前主要用于化学、生物、核和大气化学动力学及 平衡过程的反应进行建模和回归/拟合/优化。一些研究^[8-9]用该模型对污染物降解过程进行模拟, 模拟得到的数据不仅可以用来支持和验证实验结果,也可以通过模拟实验来预测污染物的降解程 度,论述建立的降解模型对实际水处理情况的适用性,并对运行参数的优化提供一定的参考。虽 然利用 kintecus 模型模拟自由基稳态浓度的研究较多,但已有研究仅模拟了特定情境下 UV/HCIO 体系降解污染物时自由基的变化规律,用以验证实验结果。然而,对于 UV/HCIO 体系降解 MC-LR 过程中主要操作条件的模拟优化却鲜有报导。因此,本研究通过改变 pH、次氯酸投加量和紫外光 波长来模拟 UV/HCIO 体系降解 MC-LR 的过程。利用已报导的实验数据来验证本研究建立动力学模 型的准确性,并预测不同条件下 UV/HCIO 体系对 MC-LR 的降解过程,优化 UV/HCIO 体系参数。

1 UV/HCIO 体系降解污染物的机理及 kintecus 模型的建立

1.1 UV/HCIO 体系对有机污染物的降解机理

在 UV/HClO 体系中,当 HClO 吸收光子<511 nm 时,会产生羟基自由基 (HO·) 和氯自由基 (Cl·)(式 (1))^[10],形成的 Cl·会与 HClO/ClO 溶液中的氯离子反应形成Cl₂·(式 (2))^[11-12]。

$$HClO/ClO^{-} \xrightarrow{h\nu} HO \cdot /O \cdot +Cl \cdot$$
(1)

 $\mathbb{C}l \cdot + \mathbb{C}l_2^- \to \mathbb{C}l_2^- \cdot \qquad k = 6.5 \times 10^9 \,\mathrm{L} \cdot (\mathrm{mol} \cdot \mathrm{s})^{-1}$ (2)

HO·、Cl·和Cl₂·均是强氧化剂,Cl·和Cl₂·标准还原电位分别为2.4 V和2.0 V,与HO·相当^[13]。 HO·、Cl·和Cl₂·通过单电子氧化,氢-吸附和不饱和C-C键的加成与有机物发生反应。Cl·是一种选 择性氧化剂,在某些情况下其反应性可能高于HO·,但Cl₂·的反应性通常比HO·或Cl·低得多^[5]。

此外,自由基清除作用将会进一步使 UV/HClO 体系复杂化。例如 HClO 和 ClO 会对 Cl·和 HO·具有不同程度的清除作用,Cl·会与 OH 反应生成 HClO⁻⁻,HO·会与 Cl 反应也会形成 HClO⁻⁻。 其中 HO·和 Cl 之间的化学反应以很高的速率常数发生,但该反应是可逆的,并且逆反应的速率常数稍高(式(3))^[12]。尽管 Cl 会大量清除 HO·,但 HClO⁻⁻分解为 HO·,会使 HO·清除的影响极小,但 Cl 的存在会引起体系内其他自由基稳态浓度的变化^[14]。

$$HO_{\cdot} + CI^{-} \stackrel{k_{+}}{\underset{k_{-}}{\longrightarrow}} HCIO^{-} \cdot \qquad \qquad k_{+} = 4.3 \times 10^{9} \, L_{\cdot} \, (mol \cdot s)^{-1}, k_{-} = 6.1 \times 10^{9} \, s^{-1} \tag{3}$$

碱度的增加会导致 MC-LR 降解速率的降低。含有碱度的 MC-LR 溶液在 254 nm 的吸光度显著 降低^[15]。在水溶液中存在CO₃⁻和HCO₃,当 pH 为 6~8 时,HCO₃的比例更大^[16]。式 (4) 和式 (5) 表明 确实发生了 HO·清除^[17],但实际对于较低含量的自由氯体系,HCO₃对体系中 MC-LR 的降解没有明 显影响^[16]。

$$HO \cdot + HCO_3^{-} \to CO_3^{-} \cdot \qquad \qquad k = 8.5 \times 10^6 \,\mathrm{L} \cdot (\mathrm{mol} \cdot \mathrm{s})^{-1} \tag{4}$$

$$\mathrm{HO} \cdot + \mathrm{CO}_{3}^{2-} \to \mathrm{CO}_{3}^{-} \cdot + \mathrm{OH}^{-} \qquad \qquad k = 3.9 \times 10^{8} \,\mathrm{L} \cdot (\mathrm{mol} \cdot \mathrm{s})^{-1} \tag{5}$$

(7)

HO·与 CI·可能是反应体系中主要的污染物清除剂,这两者的生成速率与稳态浓度将成为 UV/HCIO 体系去除污染物过程效率的限制性因素。因此,本次模型的建立主要关注 HO·与 CI·在 UV/HCIO 体系中的反应与转换。

1.2 kintecus 模型的建立

Kintecus 模型主要由模型方程和反应速率常数构成。模型方程由 UV/HCIO 体系基本自由基转 化方程^[18]和 MC-LR 主要降解方程组成^[9,19],而光解速率常数由实验条件决定,在 UV/HCIO 体系 中,参与紫外光解的主要物质为 HCIO 和 CIO⁻,光解速率常数由式 (6) 计算^[20]。

$$r_{\rm HCIO/OCI^{-}} = \frac{E_{\rm p}(1 - 10^{-\varepsilon Cd})\Phi}{d} \tag{6}$$

式中: $r_{\text{HCIO/CIO}}$ 为UV光解过程中HCIO或CIO¯衰减的速率; ϕ 为HCIO/CIO⁻光解的表观量子产率,mol·E⁻¹; E_p 为单位面积的光通量,mE·(s·cm²)⁻¹;d是有效光程长度,cm; ε 为HCIO/CIO⁻的摩尔吸收系数,L·(mol·cm)⁻¹;C为HCIO或CIO⁻的初始浓度,mol·L⁻¹。

游离氯光解速率的差异可以用氯的形态和其光子反应性的差异 (即摩尔吸收系数和量子产率) 来解释。氯的形态与 pH 的大小有关,可以根据 pKa 进行计算。对于光子反应性,HClO($\varepsilon_{HClO,254 nm}$ = 58 L·(mol·cm)⁻¹) 和 ClO⁻($\varepsilon_{ClO^-,254 nm}$ = 62 L·(mol·cm)⁻¹) 的摩尔吸收系数相似^[21],另外也与其他报导测出的实验结果基本一致 ($\varepsilon_{HClO,254 nm}$ = 60 L·(mol·cm)⁻¹; $\varepsilon_{ClO^-,254 nm}$ = 58 L·(mol·cm)⁻¹)^[22]。本研究中 HClO 与 ClO⁻摩尔吸收系数均取 60 L·(mol·cm)⁻¹。

尽管有许多研究在不同的 HCIO 投加量下 测出了不同的 HCIO/CIO⁻量子产率 (表 1),但 HCIO 投加量浓度小于 71 mg·L⁻¹(1 mmol·L⁻¹), HCIO 的量子产率就基本恒定在 1.0±0.1。CIO⁻ 浓度在 3.5~640 mg·L⁻¹(0.05~9.0 mmol·L⁻¹),CIO⁻的 量子产率就基本恒定在 0.9±0.1^[23],本研究的 HCIO 投加量与 CIO⁻变化均在上述范围内,因 此本研究选取量子产率 $\phi_{\text{HCIO}}=1, \phi_{\text{CIO}}==0.9$ 。

此外,根据文献的实验条件^[27],确定其他 实验参数:反应皿直径为5 cm;溶液体积为 30 mL;溶液深度(有效光程长度 d)为4.8 cm; 辐照面积为6.25 cm²;光源强度(光通量)为

表 1 在不同的 HCIO 初始浓度下 HCIO/CIO⁻的量子产率 Table 1 Quantum yield of HCIO/CIO⁻ based on different initial concentrations of HCIO

$arPsi_{ m HClO,254nm}$	$arPsi_{ m ClO}$ -,254 nm	HClO初始浓度/ (mmol·L ⁻¹)	参考文献
1.18	1.02	100	[24]
—	0.85	1	[25]
1.0 ± 0.1	0.9 ± 0.1	<2	[23]
1.06 ± 0.01	1.15 ± 0.08	1.41	[26]
1.5	1.3	0.014~0.056	[11]
1.45 ± 0.06	0.97 ± 0.05	0.01~0.1	[5]

9.31×10⁻⁹ E·s⁻¹; HClO 投加量为 42 µmol·L⁻¹; MC-LR 浓度为 1 µmol·L⁻¹; 实验温度为 25 ℃。

2 结果与讨论

2.1 HO·与 CI·在不同 pH 下的稳态浓度

pH 通过影响 HCIO/CIO⁻的形态来决定氯降解的吸光度和量子产率,进而决定自由基的生成 量^[18,24]。从理论上讲,次氯酸在 pH 为 4.0~6.0 时主要以次氯酸的形式存在;碱性条件 (pH> 7.0) 会 导致次氯酸根离子占主导地位;而 pH 为 1 的溶液中次氯酸将转化为 Cl₂^[10]。调节 pH 显著影响以 HCIO 形式存在的氯的比例^[28],以不同的试剂去调节 pH 会在不同程度上改变 HCIO 与 CIO⁻的比 例,但在弱酸性条件下,HCIO 均为氯的主要存在形式^[23]。本研究设置了一系列 pH,并利用式 (7)~ 式 (8) 计算不同 pH 下 HCIO 和 CIO⁻的浓度 (pKa=7.5),并对 HO·与 CI·的稳态浓度进行了计算,结果 见表 2、表 3 和图 1。

表 2 不同 pH 下 HCIO/CIO⁻体系中主要水解产物的比例

 Table 2
 Proportions of major hydrolysis products in the HClO/ClO⁻ process at different pH

表 3 HO·与 Cl·的稳态浓度预测值与实验值

Table 3 Comparison of the predicted steady-state concentrations of HO^{\cdot} and Cl^{\cdot} with experimental values

C _{HCIO投加量} /	$C_{\rm HCIO}/$ $C_{\rm CIC}$	C _{CIO} -/		本研究预测值/(mol·L ⁻¹)		实验值 ^[27] /(mol·L ⁻¹)	
$(\text{mol} \cdot L^{-1})$	(mol·L ⁻¹)	$(\text{mol} \cdot L^{-1})$	рн — -	HO·	Cl·	HO	Cŀ
4.2×10^{-5}	4.20×10 ⁻⁵	1.24×10^{-8}	4	6.97×10 ⁻¹⁴	1.31×10 ⁻¹⁴		<u> </u>
4.2×10 ⁻⁵	4.08×10 ⁻⁵	1.20×10^{-6}	6	6.59×10 ⁻¹⁴	1.22×10 ⁻¹⁴	7.89×10 ⁻¹⁴	9.31×10 ⁻¹⁵
4.2×10^{-5}	3.24×10 ⁻⁵	9.56×10 ⁻⁶	7	3.08×10^{-14}	6.22×10 ⁻¹⁵	2.64×10 ⁻¹⁴	8.29×10^{-15}
4.2×10^{-5}	1.06×10 ⁻⁵	3.14×10 ⁻⁵	8	1.88×10^{-14}	4.42×10 ⁻¹⁵	1.24×10^{-14}	6.92×10^{-15}
4.2×10 ⁻⁵	1.38×10^{-6}	4.06×10 ⁻⁵	9	1.52×10^{-14}	3.50×10 ⁻¹⁵	1.17×10 ⁻¹⁴	2.72×10^{-15}
4.2×10 ⁻⁵	1.42×10 ⁻⁸	4.20×10 ⁻⁵	11	3.02×10^{-18}	2.15×10 ⁻¹⁵	_	_
120 (1-T·10世 sr-01)/ 90 60 60 4 5		页测值 实验值 9 10 11 9 10 11 9 10 11 9 FI 对 HO·和	(I1·lour s-10)/#※字示·IO	30 20 10 -10 4 5 (b 态浓度的影响	678 pH) pH对CI·稳态浓加	● 预测值 实验值 9 10 g的影响	
Fig. 1 Effect of pH on HO \cdot and Cl \cdot steady-state concentrations							
	$C_{\text{HCO段加强}}$ (mol·L ⁻¹) 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵ 4.2×10 ⁻⁶ 4.2×10 ⁻⁶ 4.2×10 ⁻⁵ 4.2×10 ⁻⁵	$\begin{array}{c} C_{\rm HCiOREmail}/ & C_{\rm HCiO}/\\ (\rm mol\cdot L^{-1}) & (\rm mol\cdot L^{-1}) \\ \hline 4.2 \times 10^{-5} & 4.20 \times 10^{-5} \\ 4.2 \times 10^{-5} & 3.24 \times 10^{-5} \\ 4.2 \times 10^{-5} & 1.06 \times 10^{-5} \\ 4.2 \times 10^{-5} & 1.38 \times 10^{-6} \\ 4.2 \times 10^{-5} & 1.42 \times 10^{-8} \\ \hline 1.42 \times 10^{-8} & 1.42 \times 10^{-8} \\ \hline 1.42 \times 10^{-8} & 1.42 \times 10^{-8} \\ \hline 1$	C_{HCtoQE} C_{HCto} / (mol·L ⁻¹) C_{HCto} / (mol·L ⁻¹) C_{cor} / (mol·L ⁻¹) 4.2×10^{-5} 4.20×10^{-5} 1.24×10^{-8} 4.2×10^{-5} 4.08×10^{-5} 1.20×10^{-6} 4.2×10^{-5} 3.24×10^{-5} 9.56×10^{-6} 4.2×10^{-5} 1.06×10^{-5} 3.14×10^{-5} 4.2×10^{-5} 1.38×10^{-6} 4.06×10^{-5} 4.2×10^{-5} 1.42×10^{-8} 4.20×10^{-5} 4.2×10^{-5} 1.42×10^{-8} 4.20×10^{-5} 4.2×10^{-5} 1.42×10^{-8} 4.20×10^{-5} 4.2×10^{-5} 1.42×10^{-8} 4.20×10^{-5} 4.2×10^{-5} 1.42×10^{-8} 4.20×10^{-5} 4.2×10^{-5} 1.42×10^{-8} 4.20×10^{-5} 4.2×10^{-5} $6 - 7 - 8 - 9 - 10 - 11$ $9 - 9 - 10 - 11$ μ μ μ μ $4.0 \ \mu$ $5 - 6 - 7 - 8 - 9 - 10 - 11$ μ μ μ μ μ $4.0 \ \mu$ μ μ <td< td=""><td>$\frac{C_{\text{HCORPARR}}}{(\text{mol}\cdot\text{L}^{-1})} \frac{C_{\text{HCO}}}{(\text{mol}\cdot\text{L}^{-1})} \frac{C_{\text{cuo}}}{(\text{mol}\cdot\text{L}^{-1})} \text{pH} - \frac{4.2 \times 10^{-5}}{4.2 \times 10^{-5}} \frac{4.20 \times 10^{-5}}{1.20 \times 10^{-6}} \frac{1.24 \times 10^{-8}}{6} \frac{4}{4.2 \times 10^{-5}} \frac{4.08 \times 10^{-5}}{3.24 \times 10^{-5}} \frac{1.20 \times 10^{-6}}{9.56 \times 10^{-6}} \frac{6}{7} \frac{4.2 \times 10^{-5}}{1.32 \times 10^{-5}} \frac{1.32 \times 10^{-5}}{1.38 \times 10^{-6}} \frac{3.14 \times 10^{-5}}{4.06 \times 10^{-5}} \frac{8}{9} \frac{4.2 \times 10^{-5}}{1.1} \frac{1.20 \times 10^{-5}}{1.42 \times 10^{-8}} \frac{4.20 \times 10^{-5}}{1.1} \frac{11}{100} \frac{11}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c cccc} C_{\rm HCOOZMBE}' & C_{\rm InCO}' & C_{\rm CO}' & PH & \frac{{\rm A} {\rm dR} {\rm T} {\rm T} {\rm dM} {\rm d} ({\rm ImOl} \cdot {\rm L}^{-1}) \\ ({\rm mol} \cdot {\rm L}^{-1}) & ({\rm mol} \cdot {\rm L}^{-1}) & ({\rm mol} \cdot {\rm L}^{-1}) \\ \hline {\rm H} {\rm O} \cdot & {\rm Cl} \cdot \\ \hline {\rm 4} & 2 \times 10^{-5} & 4.08 \times 10^{-5} & 1.24 \times 10^{-6} & 6 & 6.59 \times 10^{-14} & 1.31 \times 10^{-14} \\ {\rm 4} & 2 \times 10^{-5} & 3.24 \times 10^{-5} & 9.56 \times 10^{-6} & 7 & 3.08 \times 10^{-14} & 6.22 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.06 \times 10^{-5} & 9.56 \times 10^{-6} & 7 & 3.08 \times 10^{-14} & 6.22 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.38 \times 10^{-6} & 4.06 \times 10^{-5} & 9 & 1.52 \times 10^{-14} & 3.50 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 0 & {\rm pH} {\rm$</td><td>$\begin{array}{c ccc} C_{\text{RCORR}MM}' & C_{\text{IRCO}}' & C_{\text{CCO}}' \\ (\text{mol} \cdot L^{-1}) & (\text{mol} \cdot L^{-1}) & (\text{mol} \cdot L^{-1}) & pH & HO & CI & HO \\ \hline 4.2 \times 10^{-5} & 4.20 \times 10^{-5} & 1.24 \times 10^{-8} & 6 & 6.59 \times 10^{-14} & 1.31 \times 10^{-14} & - \\ 4.2 \times 10^{-5} & 4.08 \times 10^{-5} & 1.20 \times 10^{-6} & 6 & 6.59 \times 10^{-14} & 1.22 \times 10^{-15} & 2.64 \times 10^{-14} \\ 4.2 \times 10^{-5} & 1.06 \times 10^{-5} & 3.14 \times 10^{-5} & 8 & 1.88 \times 10^{-14} & 4.42 \times 10^{-15} & 1.24 \times 10^{-14} \\ 4.2 \times 10^{-5} & 1.38 \times 10^{-6} & 4.06 \times 10^{-5} & 9 & 1.52 \times 10^{-14} & 3.50 \times 10^{-15} & 1.17 \times 10^{-14} \\ 4.2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} & - \\ \hline 0 & 0 \\ \hline 1 & 0 \\ \hline 0 & 0$</td></td<>	$\frac{C_{\text{HCORPARR}}}{(\text{mol}\cdot\text{L}^{-1})} \frac{C_{\text{HCO}}}{(\text{mol}\cdot\text{L}^{-1})} \frac{C_{\text{cuo}}}{(\text{mol}\cdot\text{L}^{-1})} \text{pH} - \frac{4.2 \times 10^{-5}}{4.2 \times 10^{-5}} \frac{4.20 \times 10^{-5}}{1.20 \times 10^{-6}} \frac{1.24 \times 10^{-8}}{6} \frac{4}{4.2 \times 10^{-5}} \frac{4.08 \times 10^{-5}}{3.24 \times 10^{-5}} \frac{1.20 \times 10^{-6}}{9.56 \times 10^{-6}} \frac{6}{7} \frac{4.2 \times 10^{-5}}{1.32 \times 10^{-5}} \frac{1.32 \times 10^{-5}}{1.38 \times 10^{-6}} \frac{3.14 \times 10^{-5}}{4.06 \times 10^{-5}} \frac{8}{9} \frac{4.2 \times 10^{-5}}{1.1} \frac{1.20 \times 10^{-5}}{1.42 \times 10^{-8}} \frac{4.20 \times 10^{-5}}{1.1} \frac{11}{100} \frac{11}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}{4 - 5 - 6 - 7 - 8 - 9 - 10 - 11} \frac{100}{90} \frac{100}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} C_{\rm HCOOZMBE}' & C_{\rm InCO}' & C_{\rm CO}' & PH & \frac{{\rm A} {\rm dR} {\rm T} {\rm T} {\rm dM} {\rm d} ({\rm ImOl} \cdot {\rm L}^{-1}) \\ ({\rm mol} \cdot {\rm L}^{-1}) & ({\rm mol} \cdot {\rm L}^{-1}) & ({\rm mol} \cdot {\rm L}^{-1}) \\ \hline {\rm H} {\rm O} \cdot & {\rm Cl} \cdot \\ \hline {\rm 4} & 2 \times 10^{-5} & 4.08 \times 10^{-5} & 1.24 \times 10^{-6} & 6 & 6.59 \times 10^{-14} & 1.31 \times 10^{-14} \\ {\rm 4} & 2 \times 10^{-5} & 3.24 \times 10^{-5} & 9.56 \times 10^{-6} & 7 & 3.08 \times 10^{-14} & 6.22 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.06 \times 10^{-5} & 9.56 \times 10^{-6} & 7 & 3.08 \times 10^{-14} & 6.22 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.38 \times 10^{-6} & 4.06 \times 10^{-5} & 9 & 1.52 \times 10^{-14} & 3.50 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} \\ {\rm 4} & 0 & {\rm pH} {\rm $	$ \begin{array}{c ccc} C_{\text{RCORR}MM}' & C_{\text{IRCO}}' & C_{\text{CCO}}' \\ (\text{mol} \cdot L^{-1}) & (\text{mol} \cdot L^{-1}) & (\text{mol} \cdot L^{-1}) & pH & HO & CI & HO \\ \hline 4.2 \times 10^{-5} & 4.20 \times 10^{-5} & 1.24 \times 10^{-8} & 6 & 6.59 \times 10^{-14} & 1.31 \times 10^{-14} & - \\ 4.2 \times 10^{-5} & 4.08 \times 10^{-5} & 1.20 \times 10^{-6} & 6 & 6.59 \times 10^{-14} & 1.22 \times 10^{-15} & 2.64 \times 10^{-14} \\ 4.2 \times 10^{-5} & 1.06 \times 10^{-5} & 3.14 \times 10^{-5} & 8 & 1.88 \times 10^{-14} & 4.42 \times 10^{-15} & 1.24 \times 10^{-14} \\ 4.2 \times 10^{-5} & 1.38 \times 10^{-6} & 4.06 \times 10^{-5} & 9 & 1.52 \times 10^{-14} & 3.50 \times 10^{-15} & 1.17 \times 10^{-14} \\ 4.2 \times 10^{-5} & 1.42 \times 10^{-8} & 4.20 \times 10^{-5} & 11 & 3.02 \times 10^{-18} & 2.15 \times 10^{-15} & - \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$

$$C_{\text{CIO}^-} = \frac{K_{\text{a}}C_{\text{HCIO} \not\oplus \text{Im} \not\equiv}}{C_{\text{H}^+} + K_{\text{a}}}$$
(8)

式中: K_a为水解速率常数,取值为2.95×10⁻⁸。

根据表 3 及图 1 中模拟结果与原文献实验值的对比,在 pH 为 6、7 和 9 的条件下,HO·稳态浓 度和 CI·稳态浓度误差均控制在 1.3 倍左右。在 pH 为 8 时,HO·稳态浓度的预测偏差略大,预测值 为实验值的 1.5 倍左右;CI·稳态浓度的实验值为预测值的 1.5 倍左右。模型预测值和实验值的误差 主要来自于对参与该过程反应的不完整描述与光解速率常数计算参数的选择。在紫外辐照下 MC-LR 分子会裂解产生 NH₂·^[29],NH₂·经过复杂的反应会生成一系列含氮化合物 (NH₂,NO·,NO₂· 等)^[39],HO·会与含氮化合物发生反应导致 HO·含量降低,但该类反应的研究目前尚处于起步阶 段,因此,对 HO·预测精准性尚有待深入研究^[31]。此外,HCIO/CIO·浓度是根据理想公式计算的, HCIO/CIO 计算值会略大于实际含量,因此,在酸性条件下,HO·与 CI·的稳态浓度预测值高于实验 值。而随着 pH 的增加,与实验值相比,模型预测的 CI·稳态浓度减小幅度更大,这可能是由于 CI 对 CI·清除作用 (式 (2))。在 UV/HCIO 体系中 CI 主要由 CIO·光解产生 (式 (9)),由于模型预测的 CIO·的含量可能较高,且在中性和碱性条件下 OCI 的含量高于酸性条件,因此,容易高估 CI 的含 量,从而促进 CI·的转化,因此预测的 CI·的稳态浓度在 pH 为 7 和 8 时低于实验值 (图 1(b))。

$$\text{ClO}^- \xrightarrow{h\nu} \text{O}(^1\text{D}) + \text{Cl}^-$$

(9)

不同 pH 对 MC-LR 降解效果影响明显。如图 2(a) 所示, pH 由 6.0 增加到 9.0 时, MC-LR 降解 的一级反应速率常数大大降低,该结果与原文献的实验结果一致^[27]。说明当 HCIO 为主要反应性物 质时,反应体系能够生成足量的 HO·和 Cl·等活性物质,而 CIO⁻的反应性可忽略不计,该模拟结果 与先前的研究报导一致^[19]。且在酸性溶液中反应速率的增加表明该反应易受反应体系的 pH 影响。因此,本研究模拟了 pH 为 4 和 pH 为 11 条件下的 HO·和 Cl·稳态浓度,以研究低 pH 与高 pH 条件 对 MC-LR 降解过程的影响,发现 HO·稳态浓度与 Cl·稳态浓度均在 pH 为 4 时达到最高,在 pH 为 11 时最低,且呈单调递减趋势(图 1);当 pH 为 4 时,HO·和 Cl·的稳态浓度与 pH 为 6 时模拟结果基 本相同,且当 pH 由 6 降到 4 时,其表观降解速率常数仅由 5.26×10⁻³ s⁻¹提升到 5.30×10⁻³ s⁻¹,仅提 升了 0.76%,可以忽略不计。从降解效率和绿色环保的角度可以推测比较合适的 pH 为 6。

2.2 次氯酸投加量对自由基稳态浓度和 MC-LR 降解率的影响

HCIO 与 MC-LR 的摩尔比 (*n*_{HCIO}: *n*_{MC-LR}) 为 12:1 时, MC-LR 的氯化反应符合伪一阶反应^[32]。在 pH 为 7.78 的条件下,将 HCIO 与 MC-LR 的摩尔比为 1:1、2:1 和 5:1 的样品避光氯化 180 min 后体 系中的自由氯可被消耗殆尽,说明 HCIO 投加量会对 MC-LR 的降解产生显著的影响^[33]。在 pH 为 7.78 时,计算得到 HCIO 和 CIO⁻的含量分别为 2.69×10⁻⁵ mol·L⁻¹ 和 1.51×10⁻⁵ mol·L⁻¹,其他参数与上 述讨论保持一致,计算光解速率常数后将参数代入模型计算得出自由基稳态浓度 (表 4)。

Take i changes of its and er steady state concentrations at different emotione doses							
	HClO投加量/	自由基稳态浓度/(mol·L ⁻¹)		HClO投加量/ 自由基稳态浓度/(mol·l		依度/(mol·L ⁻¹)	
	$(\mu mol \cdot L^{-1})$	HO	Cl·	$(\mu mol \cdot L^{-1})$	HO	Cl·	
	1	3.41×10^{-17}	2.00×10 ⁻¹⁷	20	1.06×10^{-14}	2.30×10 ⁻¹⁵	
$\langle \mathcal{A} \rangle$	2	1.32×10^{-16}	6.92×10 ⁻¹⁷	30	1.62×10^{-14}	3.45×10 ⁻¹⁵	
	5	1.12×10^{-15}	3.31×10 ⁻¹⁶	42	2.24×10^{-14}	4.94×10 ⁻¹⁵	
	12	4.26×10^{-15}	1.07×10 ⁻¹⁵	60	3.05×10^{-14}	7.43×10 ⁻¹⁵	

表 4	不同 HCIO 投加量下 HO·和 CI·稳态浓度的变化
// · · · · · · · · · · · · · · · · · ·	

当 MC-LR 初始浓度始终为 1 μmol·L⁻¹ 时,随着 HCIO 的增加,HCIO 的光解速率常数、自由基 稳态浓度和降解速率均逐步升高,且 HO·浓度的升高幅度大于 Cl·(图 3(a)、图 3(b) 和图 4(a)),这更 有利于污染物的降解。当 HCIO 投加量低于 12 μmol·L⁻¹ 时,在进行 60 min 紫外辐照后 MC-LR 仍无 法完全降解;但随着 HCIO 投加量提升, MC-LR 的降解率明显提高(图 5(b)),在氯添加量为 20 μmol·L⁻¹ 时,在经过 60 min 降解后能够将 MC-LR 完全降解(图 4(b))。

2603

MC-LR降解的表观速率常数与添加的 HCIO 量呈正比的关系 (图 5(a))。在低 HCIO 浓度下 (<20 μmol·L⁻¹),氯投加量增加能显著提升降解速率 (图 5(b)),氯添加量由 12 μmol·L⁻¹增加到 20 μmol·L⁻¹时,降解率达到 90% 所需的时间分别由 42.9 min 减少到 25.2 min。在 HCIO 投加量为 30 μmol·L⁻¹时,MC-LR降解率达到 90% 的时间为 16.4 min,HCIO 投加量由 42 μmol·L⁻¹提升到 60 μmol·L⁻¹时,MC-LR降解率达到 90% 的时间仅由 11.5 min 变为 8.5 min。HCIO 投加量大于 40 μmol·L⁻¹之后降解率趋向于稳定。考虑到 HCIO 投加量与降解所需时间,根据模型结果推测 HCIO 适宜投加量应为 30~42 μmol·L⁻¹。

图 3 HCIO 投加量对体系中自由基浓度和 HCIO 光解速率常数的影响

2.3 紫外光波长对自由基稳态浓度和 MC-LR 降解率的影响

光源的性质通过辐照光波长和光源强度来表现,不同性质的光源可以影响 MC-LR 降解效果。 不同的波长会影响 MC-LR 对光的吸收程度以及体系内氧化剂的量子产率,为了准确计算光解速率 常数,必须保证光源强度一致的前提下计算 HCIO/CIO⁻在对应辐照波长下的摩尔吸收系数以及量子 产率。本研究列举了 HCIO/CIO⁻在波长 257.7、268、282.3 和 301.2 nm 下的摩尔吸收系数和量子产

图 5 HCIO 投加量对 MC-LR 降解效率的影响 Fig. 5 Effect of HCIO dosage on the degradation efficiency of MC-LR

率(表 5)。并通过固定光源强度^[27]模拟不同紫 外光波长对污染物降解的影响。

在弱酸性、中性和弱碱性 3 个状态下 (pH=6、7 和 8) 对 4 个不同波长 (257.7、268、 282.3 和 301.2 nm) 光源条件下对初始浓度为 1 μmol·L⁻¹的 MC-LR 进行了降解模拟。结果表 明,在 pH 为 6 时 MC-LR 具有最佳的降解效 果,且 pH 的增加使 MC-LR 的表观降解速率常 数降低 (图 6(a)),增加波长可以使 MC-LR 的表 观降解速率常数下降 (图 6(b)),这可能是由于 波长增加导致量子产率减小的缘故。当 pH 由

5 不同波长光源下 HCIO/CIO⁻的量子产率和 摩尔吸收系数^[24]

 Table 5
 Quantum yield and molar absorption coefficient of HClO/ClO⁻ under different wavelength light sources

波长/nm	$\varepsilon_{ m HClO}$	€ _{ClO} -	$arPsi_{ m HClO}$	$arPsi_{ ext{ClO}}$ -	$E_{\rm p}$
257.7	48.35	83.32	1.18	1.00	1.49×10 ⁻⁶
268	30.82	175.47	1.11	0.97	1.49×10 ⁻⁶
282.3	26.69	305.21	0.98	0.82	1.49×10 ⁻⁶
301.2	25.21	316.15	0.96	0.77	1.49×10 ⁻⁶

注: ε 是摩尔吸收系数(L·(mol·cm)⁻¹); Φ 是量子产率(mol·E⁻¹); E_p 是辐照度(mE·(cm²·s)⁻¹)。

6提升至8时, MC-LR的表观降解速率由5.07×10⁻³ s⁻¹下降到3.84×10⁻³ s⁻¹,减小了24%,当波长由257.7 nm提升到301.2 nm时,表观降解速率由5.07×10⁻³ s⁻¹下降到4.69×10⁻³ s⁻¹,下降了7.5%, pH变化引起的MC-LR的表观降解速率提升比波长变化的影响更加显著,可以推测pH才是MC-LR实验中最应优先考虑的操作因素。而波长变化引起的反应速率常数的变化不明显,可能是由于本次模拟所选取的波长变化范围较窄仅为43.5 nm所造成的。

图 6 控制变量以研究 pH 与光源波长对 MC-LR 降解动力学的影响

Fig. 6 Control variables to study the effects of pH and light source wavelength on the degradation kinetics of MC-LR

当波长由 257.7 nm 增加到 301.2 nm 时, HCIO 的摩尔吸收系数由 48.35 L·(mol·cm)⁻¹下降到 25.2 L·(mol·cm)⁻¹为原来 0.5 倍, CIO⁻的摩尔吸收系数增加的幅度显著大于 HCIO, 且增加波长能大幅度 升了 3.8 倍 (表 5),增加波长 CIO⁻的摩尔吸收系数增加的幅度显著大于 HCIO,且增加波长能大幅度 提升 CIO⁻光解速率 (图 7(a)),但 MC-LR 在碱性条件下的降解效率低于酸性条件,这归因于尽管在 不同的波长下或在不同的 pH下 HO·均是主要的反应性物质 (图 7(b)),这与这与原文献实验研究结 果一致^[27]。在 pH 为 6 的条件下,在波长由 257.7 nm 增加到 301.2 nm 的过程中,HO·与 CI·的稳态浓 度均随波长增加而降低,说明低波长下能产生更多的 HO·与 CI·。

Fig. 7 Influence of the wavelength of the light source on the photolysis rate constant of the HClO component in the system and the steady-state concentration of radicals

3 结论

1) pH 的模拟结果与实验结果相近,误差基本控制在 1.5 倍以内。当辐照波长为 254 nm 时,当体系为弱酸性环境 (pH=6) 时,对 MC-LR 的降解效果较好,继续降低 pH, MC-LR 的降解效果提升不明显。

2) 在 254 nm 的辐照波长下,当 MC-LR 为 1 μmol·L⁻¹ 时,HClO 投加量超过 40 μmol·L⁻¹之后, 降解效率的提升趋势较为平缓,结果表明,HClO 投加量在 30~42 μmol·L⁻¹ 时 UV/HClO 体系降解 MC-LR 效果最好。

3) 在相同辐照功率下,在低波长 (257.7~301.2 nm) 的范围内,低波长具有更好的降解效果,但 相对 pH 和 HClO 投加量,波长对 MC-LR 的降解效果影响并不明显。

参考文献

- BULLERJAHN G S, MCKAY R M, DAVIS T W, et al. Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms: A lake erie case study[J]. Harmful Algae, 2016, 54: 223-238.
- [2] CATHERINE Q, SUSANNA W, ISIDORA E S, et al. A review of current knowledge on toxic benthic freshwater cyanobacteria: Ecology, toxin production and risk management[J]. Water Research, 2013, 47(15): 5464-5479.
- [3] HARKE M J, STEFFEN M M, GOBLER C J, et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, microcystis spp[J]. Harmful Algae, 2016, 54: 4-20.

- [4] LIAO C H, KANG S F, WU F A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H₂O₂/UV process[J]. Chemosphere, 2001, 44: 1193-1200.
- [5] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J].
 Environmental Science and Technology, 2014, 48(3): 1859-1868.
- [6] WATTS M J, HOFMANN R, RCDSENFELDT E J. Low-pressure UV/Cl₂ for advanced oxidation of taste and odor[J]. Journal American Water Works Association, 2012, 104(1): 58-65.
- [7] REMUCAL C K, MANLEY D. Emerging investigators series: The efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment[J]. Environmental Science: Water Research and Technology, 2016, 2(4): 565-579.
- [8] WANG A Q, LIN Y L, XU B, et al. Kinetics and modeling of iodoform degradation during UV/chlorine advanced oxidation process[J]. Chemical Engineering Journal, 2017, 323: 312-319.
- [9] ZHANG X R, HE J, LEI Y, et al. Combining solar irradiation with chlorination enhances the photochemical decomposition of microcystin-LR[J]. Water Research, 2019, 159: 324-332.
- [10] NOWELL L, HOIGNÉ J. Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths: II. hydroxyl radical production[J]. Water Research, 1992, 26(5): 599-605.
- [11] WATTS M J, LINDEN K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water[J]. Water Research, 2007, 41(13): 2871-2878.
- [12] KLÄNING U K, WOLFF T. Laser flash photolysis of HCIO, CIO⁻, HBrO, and BrO⁻ in aqueous solution[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1985, 89(3): 243-245.
- [13] NETA P, HUIE R, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Physical and Chemical Reference Data, 1988, 17(3): 1027-1284.
- [14] JAYSON G G, PARSONS B J, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution[J]. Journal of the Chemical Society-Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1973, 69: 1597-1607.
- [15] HUANG K, MACKAY A A Microcystin-LR degradation kinetics during chlorination: Role of water quality conditions[J]. Water Research, 2020, 185: 116305.
- [16] CHINTALAPATI P, MOHSENI M. Degradation of cyanotoxin microcystin-LR in synthetic and natural waters by chemicalfree UV/VUV radiation[J]. Journal of Hazardous Materials, 2020, 381(5): 120921.
- [17] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH·/O·⁻) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513.
- [18] BULMAN D M, MEZYK S P, REMUCAL C K. The impact of pH and irradiation wavelength on the production of reactive oxidants during chlorine photolysis[J]. Environmental Science and Technology, 2019, 53(8): 4450-4459.
- [19] ACERO J L, RODRIGUEZ E, MERILUOTO J. Kinetics of reactions between chlorine and the cyanobacterial toxins

microcystins[J]. Water Research, 2005, 39(8): 1628-1638.

- [20] CHUANG Y H, CHEN S, CHINN C J, et al. Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse[J]. Environmental Science and Technology, 2017, 51(23): 13859-13868.
- [21] CARRELL M J. The acid ionization constant of HOCl from 5 to 35°[J]. Journal of Physical Chemistry, 1966, 70(12): 3798-3805.
- [22] KWON M, YOON Y, KIM S, et al. Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275nm LED-UV and 254nm LP-UV[J]. Science of the Total Environment, 2018, 637-638: 1351-1357.
- [23] FENG Y G, SMITH D W, BOLTON J R. Photolysis of aqueous free chlorine species (HOCl and OCl⁻) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2007, 6(3): 277-284.
- [24] YIN R, LING L, SHANG C. Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources[J]. Water Research, 2018, 142: 452-458.
- [25] BUXTON G V, SUBHANI M S. Radiation chemistry and photochemistry of oxychlorine ions. Part 2. Photodecomposition of aqueous solutions of hypochlorite ions[J]. Journal of the Chemical Society-Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1972, 68: 958-969.
- [26] JIN J, EL-DIN M G, BOLTON J R. Assessment of the UV/Chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896.
- [27] ZHANG X R, HE J, XIAO S, et al. Elimination kinetics and detoxification mechanisms of microcystin-LR during UV/chlorine process[J]. Chemosphere, 2019, 214: 702-709.
- [28] MARÍN A, TUDELA J A, GARRIDO Y, et al. Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products[J]. Innovative Food Science and Emerging Technologies, 2020, 66: 102533.
- [29] XIE G, HU X, DU Y, et al. Light-driven breakdown of microcystin-LR in water: A critical review[J]. Chemical Engineering Journal, 2021, 417: 129244.
- [30] WU Z, CHEN C, ZHU B Z, et al. Reactive nitrogen species are also involved in the transformation of micropollutants by the UV/monochloramine process[J]. Environmental Science and Technology, 2019, 53(19): 11142-11152.
- [31] YIN R, BLATCHLEY E R, SHANG C. UV photolysis of mono- and dichloramine using UV-LEDs as radiation sources: Photodecay rates and radical concentrations[J]. Environmental Science and Technology, 2020, 54(13): 8420-8429.
- [32] MEREL S, LEBOT B, CLEMENT M, et al. Ms identification of microcystin-LR chlorination by-products[J]. Chemosphere, 2009, 74(6): 832-839.
- [33] ZHANG X R, LI J, YANG J Y, et al. Chlorine/UV process for decomposition and detoxification of microcystin-LR[J]. Environmental Science and Technology, 2016, 50(14): 7671-7678.

(责任编辑:曲娜)

Simulation of steady-state radical concentration and reaction kinetics of MC-LR degradation by UV/hypochlorous acid based on kintecus model

FAN Yongjie^{1,2}, ZHENG Yuyi^{1,2,3,4}, WANG Feifeng^{1,2,3,4}, WU Chunshan^{1,2,3,4}, SUN Qiyuan^{1,2,3,4}

1. College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China

2. Institute of Environmental Science, Fujian Normal University, Fuzhou 350007, China

3. Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, China

4. Research Center of Urban Waste Resource Recycling Technology and Management Engineering in Universities of Fujian Province, Fuzhou 350007, China

*Corresponding author, E-mail: minglei_2008@fjnu.edu.cn

Abstract Microcystin-LR (MC-LR) produced by the metabolism of cyanobacteria will contaminate drinking water sources and threaten the human health. UV/Hypochlorous acid technology can generate strong oxidizing substances such as chlorine radicals (Cl·) and hydroxyl radicals (HO·) to degrade MC-LR. However, the optimal parameters of this technology have not yet been known, and the reported experimental results can only provide some parameters. Thus, numerical simulation is urgently needed to determine more important parameters. Therefore, the kintecus chemical kinetic model was used to simulate the previously reported experimental data and predict the unreported data. The results showed that the predicted values of the model were consistent with the experimental values, and the errors were within 1.5 times. When the pH was 6, the UV/hypochlorous acid technology had the best performance on MC-LR degradation, and the degradation rate could reach 90% within 7 minutes. The steady-state concentrations of HO· and Cl· were 6.59×10^{-14} mol·L⁻¹ and 1.22×10^{-14} mol·L⁻¹, respectively, which were in accordance with the experimental results of the original literatures $(7.89 \times 10^{-14}$ mol·L⁻¹, 0.93×10^{-14} mol·L⁻¹). After the concentration of hypochlorous acid exceeded 40 μ mol·L⁻¹, the degradation rate remained constant. When the wavelength of ultraviolet light increased from 257.7 nm to 301.2 nm, the apparent degradation rate constant of MC-LR decreased from 5.07×10^{-3} s⁻¹ to 4.69×10^{-3} s⁻¹, a decrease of 7.5%. When the wavelength was 257.7 nm and the pH increased from 6 to 8, the apparent degradation rate dropped from 5.07×10^{-3} s⁻¹ to 3.84×10^{-3} s⁻¹ with a decrease rate of 24%. Therefore, the effect of pH on the degradation efficiency was greater than that of ultraviolet light wavelength.

Keywords kintecus model; ultraviolet/hypochlorous acid; microcystin-LR; steady-state concentration; kinetics