

毛文龙,杨瑞丽,王晓君,等.由 anammox 转为 CANON 工艺的调控策略及微生物响应特性[J].环境工程学报,2021, 15(7):2488-2501.

MAO Wenlong, YANG Ruili, WANG Xiaojun, et al. Regulation strategies and microbial response characteristics in the transformation process from anammox to CANON[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2488-2501.

由 anammox 转为 CANON 工艺的调控策略及微 生物响应特性

毛文龙1,2,3,杨瑞丽2,王晓君2,*,张召基2,吴俊斌2,陈少华2

福建农林大学资源与环境学院,福州 350002
 中国科学院城市环境研究所,城市污染物转化重点实验室,厦门 361021
 中国科学院大学,北京 100049

第一作者:毛文龙(1995—),男,硕士研究生。研究方向:水污染控制技术。E-mail:wlmao@iue.ac.cn *通信作者:王晓君(1987—),女,博士,副研究员。研究方向:水污染控制技术。E-mail:xjwang@iue.ac.cn

摘 要 为探究全程自养脱氮工艺 (completely autotrophic nitrogen removal over nitrite, CANON) 启动和高负荷运行 过程中微生物响应特性并确定有效的调控策略,基于已稳定运行的厌氧氨氧化 (anaerobic ammonium oxidation, anammox)系统,通过调控 DO、pH 和游离氨,并采取逐渐降低NO₂-N 和提升NH⁺₄-N 的质量浓度的方式将其转为 CANON 工艺。结果表明:以10~20 mg·L⁻¹的游离氨为参考因素,调控 DO 为 0.2~0.5 mg·L⁻¹、pH 为 7.0~7.2,可有 效抑制亚硝酸盐氧化菌增殖,稳步提升氨氧化速率和氮去除速率(分别约为 0.98 kg·(m³·d)⁻¹和 1.67 kg·(m³·d)⁻¹), 顺利启动 CANON 工艺; anammox 和亚硝化途径对NH⁺₄-N 的转化比最终稳定在 0.73 左右;高质量浓度 (>1 800 mg·L⁻¹)的氨氮会促使 anammox 菌基因丰度增加,而使氨氧化菌基因丰度降低; anammox 菌在 CANON 启动前期 和高负荷条件下分别以 *Candidatus Kuenenia*和 *Candidatus Brocadia*为优势菌属,而 SM1A02 作为可能的 anammox 菌属同氨氧化菌属 *Nitrosomona* 在启动过程中始终为优势菌属。

关键词 全程自养脱氮工艺;氨氮转化路径;游离氨;微生物特性;氮去除率

全程自养脱氮工艺 (completely autotrophic nitrogen removal over nitrite, CANON) 不但脱氮路径 短,污泥产量低,无需外加碳源,比部分硝化-厌氧氨氧化工艺的温室气体排放少^[1],还比传统硝 化反硝化工艺节省约 63% 的曝气量,是最具发展前景的高效脱氮工艺^[2-3]。然而,其内部主要的脱 氮 功能菌氨氧化菌 (ammonia oxidation bacteria, AOB) 和厌氧氨氧化 (anaerobic ammonia oxidation, anammox) 菌生长缓慢,富集难度大,其活性极易受环境因子 (如NH⁴₄-N、NO²₂-N、DO和 pH等) 的 影响,使得 CANON 工艺启动和稳定运行面临巨大挑战^[4-6]。有研究^[7-8]表明,率先接种 anammox 污泥的厌氧/限氧的运行方式能快速启动 CANON 工艺。李祥等^[9]也指出,采用基于 anammox 污泥的厌氧/限氧启动模式是一种行之有效的策略,其在升流式生物膜反应器中,比基于普通活性 污泥的好氧/限氧运行方式的启动时长缩短约 72 d。但有关该启动模式所适用的调控参数,如DO、

收稿日期: 2021-03-16; 录用日期: 2021-04-27

基金项目: 福建省科技计划引导性项目(2019Y0076); 中国科学院城市环境研究所青年人才前沿项目(IUEQN201801)

游离氨 (free ammonia, FA) 和游离亚硝酸 (free nitrous acid, FNA) 质量浓度等,依然存在较大争议,亟待进一步探究。

DO 作为 CANON 工艺运行的关键环境因子,其最适宜的调控范围至今尚未有定论。有研究者 指出,在 anammox 污泥基础上,接种 3 g·L⁻¹ 的部分硝化污泥,并控制启动前期的 DO 为 0.5~1 mg·L⁻¹, 待稳定运行后保持 1.5~4.3 mg·L⁻¹ 的 DO 范围,可以使 CANON 工艺高效运行,氮去除率 (nitrogen removal rate, NRR) 可达 1.22 kg·(m³·d)^{-1[10]}。以同样的启动模式,FANG 等^[11]则认为,调控 DO 为 1.5~2.0 mg·L⁻¹,亦可顺利启动 CANON 工艺,但NRR 仅 120 g·(m³·d)⁻¹。另有研究者发现、高于 0.7 mg·L⁻¹ 的 DO 水平便会使 NO₂过量累积^[12],需要严格控制 DO 为 (0.35 ± 0.05) mg·L⁻¹,才可实现 AOB 和 anammox 菌的协同生长,使 NRR 达 0.51 kg·(m³·d)^{-1[13]}。此外,NH^{*}₂-N和 NO₂-N虽然是 AOB 和 anammox 菌的生长基质,但也极易抑制 AOB 和 anammox 菌的生长^[14,15],主要以 FA 和 FNA 形式构 成抑制,而且受体系内的 pH影响很大^[16]。部分研究结果表明,AOB 和 anammox 菌的 FNA 抑制阈 值分别为 100 µg·L^{-1[17,18]}和 15 µg·L^{-1[4]}。然而,PUYOL 等^[19]发现,FNA 对 anammox 菌抑制的质量浓 度为 117 µg·L⁻¹。同时,针对 FA 的抑制阈值,不同研究结果差异较大。有研究者指出,FA 对 anammox 菌的抑制阈值为 20~25 mg·L^{-1[20]};部分研究表明,高于 32.5 mg·L⁻¹的 FA 会严重抑制 AOB 和 anammox 菌的生长^[17];另有研究者发现,超过 90 mg·L⁻¹的 FA 才会抑制 anammox 菌活性^[21]。以 上研究结果充分表明,有关 CANON 工艺的运行调控策略急需进一步探究。

尽管已有研究中均能顺利启动 CANON 工艺,并应用于实际废水的治理中。但关于 CANON 工 艺启动模式、运行过程中 FA 和 FNA 的影响、高负荷运行所需的最佳环境条件及启动运行过程中 微生物群落的响应特性仍有必要进行深入研究。为此,本研究以稳定运行的 anammox 系统为研究 对象,先考察适宜 anammox 菌生长的最佳条件;再通过调控所筛选的环境条件,采取逐渐降低 NO₂-N 和提升NH⁴-N 质量浓度的方式启动 CANON 工艺,并探究整个实验过程中微生物群落的响应 特性;最后,深入分析 CANON 启动运行过程中,FA 和 FNA 对氮转化速率的影响,以期为 CANON 工艺的实际应用提供参考。

1 材料和方法

1.1 实验装置和运行条件

实验采用升流式厌氧固定床反应器,其示 意图见图 1。反应器有效容积为 100 L,内径 为 30 cm,内部装填鲍尔环填料,顶部加盖, 由螺钉和胶条密封,上部安装 DO、pH 探头并 预留排气孔。距底部 2 cm 和顶部 10 cm 处分别 设有进水口和出水口,中部和底部设有污泥采 样口。反应器内的 DO 和 pH 分别通过哈希溶 氧 仪 (SC200, HACH Water Quality Analysis Instrument Ltd, USA)和工业在线 pH 计 (pH7203, 成都锐新仪器仪表有限公司,中国)在线控制 DO 为 0.2~0.5 mg·L⁻¹和 pH 为 7.0~7.2^[6],水力停 留时间为 1 d。反应器外部包裹电加热带以确 保内部恒温为 (35±2)℃,且避光运行,以维持 anammox 菌适宜的生长环境。

图 1 实验装置示意图 Fig. 1 Schematic diagram of experimental device

anammox 批次实验的污泥取自本实验室已 稳定运行 180 d, 脱氮性能良好的 anammox 中试系统^[15, 22]。该系统在进水NH⁺-N和NO⁻₇-N 质量浓度均为 300 mg·L⁻¹时, 总氮去除率 (nitrogen removal efficiency, NRE)和 NRR 分别 达 89.88% 和 0.64 kg·(m³·d)⁻¹。从中试系统中采 集污泥样品,控制温度为35℃,通过4个批 次实验,分别考察 DO、pH、FNA 和 FA 对比 厌氧氨氧化活性 (specific anammox activity, SAA) 的影响,每个处理设置3个生物学重复。其中, 不同的 DO 环境是通过调控敞口和闭口条件下 的摇床转速实现; pH 是在控制 NH⁺₄-N 和 NO⁻₇-N的质量浓度不变的条件下,利用 HCl和 NaOH调节; FNA和 FA 是在控制 pH 不变的条 件下,分别调整NO5-N和NH5-N的质量浓度得 以实现; pH、FNA 和 FA 对 SAA 的影响实验均 是在闭口(厌氧)条件下进行,具体运行参数如 表1所示。另外, SAA 测定的具体操作过程参 考先前的研究中的方法[15,22]。

1.3 CANON 工艺启动

在中试 anammox 系统内,接种 20 L 混合 液悬浮固体 (mixed liquor suspended solids, MLSS) 和混合液挥发性悬浮固体 (mixed liquor volatile suspended solids, MLVSS)分别为 7.05 g·L⁻¹和 4.19 g·L⁻¹的城市污水处理厂活性污泥,开启曝 气,按照表 2 的操作条件启动 CANON 工艺。 启动过程共经历 3 个阶段:适应阶段 I (0~69 d)、 活性提高阶段 II (70~149 d) 和稳定运行阶段 III (150~162 d)。运行期间,采集进出水样品经 0.45 μm 滤膜过滤后,分别采用纳氏试剂法、 N-(1-萘基) 乙二胺分光光度法和紫外分光光度 法测定样品中的NH⁴-N、NO²-N和NO³-N^[23];污 泥样品 MLSS、MLVSS 均按标准方法^[24]测定。 1.4 DNA 提取、实时定量 PCR 与多样性测定

 DNA 提取。在 CANON 工艺启动过程 中,采集 0、18、44、69、77、83、89、98、 131、139、143、149 和 162 d 的污泥样品,经 30 min 静沉后,称取 500 mg 污泥样品,使用 FastDNA[™] SPIN Kit for Soil (LLC, MP Biomedicals, USA) 提取试剂盒,进行 DNA 提取。

因素	pН	$FA/(mg \cdot L^{-1})$	$FNA/(\mu g \cdot L^{-1})$	转速/(r·min ⁻¹)
	7.2	5.01	5.59	闭口120
	因素 pHFA/(mg·L ⁻¹)FNA/(n <b< td=""><td>5.59</td><td>敞口50</td></b<>	5.59	敞口50	
DO	7.2	5.01	5.59	敞口80
	7.2	5.01	5.59	敞口120
	7.2	5.01	5.59	敞口180
	7.2	5.01	mg·L ⁻¹) $FNA/(\mu g·L^{-1})$ 5.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.015.595.0217.623.821.769.650.188.690.065.015.125.0110.245.0110.245.0120.495.0150.295.015.590.035.595.045.590.065.590.095.590.155.59	敞口250
	6	0.04	175.97	150
	6.5	0.13	55.71	150
nН	7	0.42	17.62	150
pm	8	3.82	1.76	150
-	9	19.65	0.18	150
	9.5	28.69	0.06	150
	7.2	5.01	5.12	150
Ο.	7.2	5.01	FNA/(µg·L ⁻¹) 年速 5.59 第 175.97 55.71 17.62 1.76 0.18 0.06 5.12 10.24 15.83 20.49 30.73 50.29 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59	150
ENIA	7.2	5.01	15.83	150
Ing	7.2	5.01	20.49	150
	7.2	5.01	30.73	150
\mathbf{N}	7.2	5.01	50.29	150
	7.2	5.01	5.59	150
FA	7.2	10.03	5.59	150
	7.2	15.04	5.59	150
	7.2	20.06	5.59	150
	7.2	30.09	5.59	150
	7.2	50.15	5.59	150

表 1 anammox 批次实验的运行条件 Table 1 Experimental set-up of the anammox batch test

表 2 CANON 工艺启动过程的运行条件

 Table 2
 Operation conditions of the CANON process during start-up phase

阶段	时间/d	进水NH ₄ -N/ (mg·L ⁻¹)	进水NO ₂ -N/ (mg·L ⁻¹)	$DO/(mg \cdot L^{-1})$	рН
Ι	0~17	350	250	0.35±0.15	7.10±0.05
	18~43	400	200	0.28 ± 0.10	7.03±0.10
	44~69	500	100	0.20±0.10	7.10±0.08
П	70~77	600	0	0.21±0.02	7.08±0.10
	78~83	800	0	$0.20{\pm}0.02$	7.13±0.07
	84~88	1 000	0	$0.20{\pm}0.02$	7.07±0.10
	89~97	1 200	0	$0.20{\pm}0.02$	7.07±0.09
	98~131	1 400	0	$0.20{\pm}0.02$	7.10±0.10
	132~138	1 600	0	0.22 ± 0.02	7.10±0.10
	139~143	1 800	0	0.25 ± 0.10	7.10±0.05
	144~149	2 000	0	0.27 ± 0.07	7.20±0.05
I	150~162	2 000	0	0.37±0.10	7.20±0.05

DNA 经 1% 琼脂糖凝胶电泳和 Nanodrop (ND1 000, Gene Company Limited, China) 进行质检后, -80 ℃ 保存, 用于后续分析。

2) 实时定量 PCR。选取 0、18、44、69、77、83、89、98、131、139、143 和 149 d 的 DNA 样 品,采用 Roche LightCycler[®] 480 II (Roche Diagnostics Ltd, Rotkreuz, Swltzerland) 实时荧光定量系统进行 qPCR 分析,以定量测定反应体系内 anammox 菌、AOB、反硝化菌 (denitrifying bacteria, DNB) 和 亚硝酸盐氧化菌 (nitrite oxidation bacteria, NOB) 中氮转化功能基因拷贝数。qPCR 的反应体系及操作 过程参考先前的研究^[22],采用的特异性引物见表 3。

Table 3 A summary of oligonucleotide sequences of the primers for qPCR						
目标	引物	序列(5'~3')	PCR产物 长度/bp	参考文献	扩增条件	
amoA	amoA-F	GGACTTCACGCTGTATCTG	125	[25-26]		
	amoA-R	GTGCCTTCTACAACGATTGG	135		94 ℃预变性5 min, 35个循环	
NirS	NirS-2F	TACCACCC(C/G)GA(A/G)CCGCGCGT	164	[27.20]	(95 C受轻50 \$, 80 C返火50 \$, 72 ℃延伸45 s)	
	NirS-3R	GCCGCCGTC(A/G)TG(A/C/G)AGGAA	104	[27-26]		
Anammox 16S rRNA	808F	ARCYGTAAACGATGGGCACTAA			95 ℃预变性3 min, 35个循环	
	1040R	CAGCCATGCAACACCTGTRATA	262	[29]	(95 ℃变性30 s, 45 ℃退火30 s, 72 ℃延伸30 s)	
Nitrobacter	NSR1113F	CCTGCTTTCAGTTGCTACCG	100	[25, 30]		
	NSR1264R	GTTTGCAGCGCTTTGTACCG	152		95 ℃预变性5 min, 35个循环	
Nitrospira	Nitro1198F	ACCCCTAGCAAATCTCAAAAAACCG	220	[21]	(95 ℃文注50 s, 57 ℃逐次50 s, 72 ℃延伸30 s)	
	Nitro1423R	CTTCACCCCAGTCGCTGACC	220	[31]		

表 3 qPCR 引物相应的寡核苷酸序列汇总

3) Illumina 高通量测序。选用引物 515F (5'-GTG CCA GCM GCC GCG G-3') 和 907R (5'-CCG TCA ATT CMT TTR AGT TT-3') 对 0、77、139 和 162 d 的 DNA 样品进行扩增,扩增产物经 2% 琼脂糖凝胶电泳质控,经均一化后,进行 Miseq 文库构建,并采用 Illumina Miseq 测序平台对样品进行高通量测序。

1.5 数据处理

根据式 (1) 和式 (2)^[32] 计算 CANON 工艺运行中 FA 和 FNA 的质量浓度。本研究中,整个实验 过程没有添加有机碳源,故反应器内的脱氮过程主要以 anammox 途径为主导。系统中亚硝化和 anammox 途径对氨氮的转化率由式 (3)~式 (5)^[33-35] 计算。由以上的化学计量关系计算以 anammox 途 径为主导的 NRR、氨氧化速率 (ammonium oxidation rate, AOR) 和 NOB 的硝化速率 (nitrite oxidation rate, NOR),如式 (6)~式 (8)^[33-35] 所示。

$$C_{\rm FA} = \frac{17}{14} \times \frac{C_{\rm NH_4^+ \cdot N} \times 10^{\rm pH}}{e^{\frac{634}{27}} + 10^{\rm pH}}$$
(1)

$$C_{\rm FNA} = \frac{47}{14} \times \frac{C_{\rm NO_2^- \cdot \rm N}}{e^{\frac{-2.300}{T}} \times 10^{\rm pH}}$$
(2)

式中: C_{FA} 、 C_{FNA} 、 $C_{NH_4^*-N}$ 和 $C_{NO_2^*-N}$ 分别为FA、FNA、NH₄⁺-N和NO₂⁻-N的质量浓度, mg·L⁻¹; T为温度, K。

 $NH_{4}^{+} + 1.32NO_{2}^{-} + 0.66HCO_{3}^{-} + 0.13H^{+} \rightarrow 1.02N_{2} + 0.26NO_{3}^{-} + 0.066CH_{2}O_{0.5}N_{0.15} + 2.03H_{2}O$ (3)

$$NH_{4}^{+} + 1.38O_{2} + 1.98HCO_{3}^{-} \rightarrow 0.018C_{5}H_{7}NO_{2} + 0.98NO_{2}^{-} + 1.89CO_{2} + 2.93H_{2}O$$
(4)

$$NO_2^- + H_2O \to NO_3^- + 2H^+$$
 (5)

第7期

$$V_{\rm NRR} = \frac{\Delta C_{\rm TN}}{t_{\rm HRT}}$$

$$\Delta C_{\rm NH_4^+-N} - \frac{\Delta C_{\rm TN}}{2.04}$$
(6)

$$V_{\text{AOR}} = \frac{2.04}{t_{\text{HRT}}}$$

$$V_{\text{NOR}} = \frac{\Delta C_{\text{NO}_{3}} - N - \frac{\Delta C_{\text{TN}}}{2.04} \times 0.26}{t_{\text{HRT}}}$$
(8)

式中: V_{NRR} 、 V_{AOR} 、 V_{NOR} 分别为 NRR、AOR 和 NOR, kg·(m³·d)⁻¹; $\Delta C_{\text{NH}_{1}^{-N}}$ 、 $\Delta C_{\text{NO}_{1}^{-N}}$ 和 ΔC_{TN} 分别为进 出水中NH[‡]-N、NO⁵₃-N和TN的质量浓度差,mg·L⁻¹。

17

2 结果与讨论

2.1 环境条件对 anammox 菌活性的影响

SAA 是 anammox 菌转化NH⁺₄-N 和NO⁻₂-N 为 N₂ 的反应速率,常被作为评价 anammox 过程的脱氮 性能的指标,其数值均以 VSS 计^[36]。为探究由 anammox 转为 CANON 工艺的最佳转化条件,首先 通过批次实验考察了不同 DO、pH、FNA 和 FA 对 SAA 的影响。由图 2 可知, SAA 随敞口环境下 转速的增加而逐渐降低,与DO环境有显著的负相关关系(P<0.01),且当转速达120 r·min⁻¹(DO约 0.78 mg·L⁻¹)时, SAA迅速下降至 22.39 mg·(g·d)⁻¹(均以 VSS 计), 较 80 r·min⁻¹ 时 (DO 为 0.4~0.5 mg·L⁻¹) 下降 55.79%。这说明 CANON 工艺启动过程中应控制 $DO \le 0.5 \text{ mg·L}^{-1}$, 以确保 anammox 菌具有较高 的活性。同时,当pH为6.0~8.0时,SAA随pH增加而逐渐升高,当pH为8.0时,SAA达到最高

图 2 不同环境因子作用下 SAA 变化

Fig. 2 Variation of SAA under different environmental factors

值 77.16 mg·(g·d)⁻¹; 之后, SAA 急剧下降, 当 pH 为 9.0 时, SAA 仅为 15.71 mg·(g·d)⁻¹, 较 pH 为 8.0 时下降了 79.64%。FNA 和 FA 对 SAA 均有低浓度促进、高浓度抑制的作用,且 FNA 和 FA 分别 在 10 µg·L⁻¹ 和 15 mg·L⁻¹ 时, SAA 达到峰值,分别为 67.33 mg·(g·d)⁻¹ 和 90.52 mg·(g·d)⁻¹。当高于该 阈值后,FNA 对 SAA 抑制效果并不明显,而 FA 与 SAA 则呈显著的负相关关系 (P<0.01)。该结果 与 LI 等^[17] 和 YANG 等^[15] 的研究结果一致。LI 等^[17] 指出 32.5 mg·L⁻¹ 的 FA 会显著抑制 anammox 菌 活性。YANG 等^[15] 也指出控制 FNA<15 µg·L⁻¹、FA<15 mg·L⁻¹,可以快速恢复经强碱冲击后严重恶 化的 anammox 过程。以上结果表明,在 DO<0.5 mg·L⁻¹、pH 为 7.0~8.0、FNA 为 5~20 µg·L⁻¹和 FA 为 10~20 mg·L⁻¹的条件下,有利于高活性 anammox 菌的生长。

2.2 CANON 工艺启动过程中水质变化

图 3 反映了 CANON 工艺启动过程中的水质变化。由图 3 可知, CANON 工艺的启动经历了 3 个阶段:适应阶段 (阶段 Ⅰ, 0~69 d)、活性提高阶段 (阶段 Ⅱ, 70~149 d) 和稳定运行阶段 (阶段 Ⅲ, 150~162 d)。在阶段 Ⅰ中,在开始曝气后的 1~3 d, DO 约 0.40 mg·L⁻¹,反应器脱氮性能急速恶化,NRE 由开始曝气前的 80.78% 迅速降至 37.73%,出水NH⁺₂-N 和NO⁻₂-N 质量浓度也较开始曝气前分别增加了 3.16 倍和 21.14 倍;但随后 DO 逐步稳定于 0.27 mg·L⁻¹,反应器内微生物也逐渐适应曝气环境,第 17 天时,NRE 已恢复至 78.56%,在第 18 天和 44 天,在 2 次提高进水基质中质量浓度 后,也观察到该现象。这是因为,在提高进水负荷的同时增加曝气量,DO 质量浓度也随之提高 (0.51 mg·L⁻¹),可抑制 anammox 菌活性。之后由于 AOB 等好氧菌的快速增殖:一方面消耗内部 DO,使其降低至 0.3 mg·L⁻¹以下;另一方面促进生物膜或颗粒污泥的形成,进而削弱 DO 的抑制,从而使 anammox 体系表现一定的适应性^[37]。有研究^[38-39]表明,在 CANON 工艺启动的适应阶段,

反应器内无NO₃的明显累积,且 0.2~0.5 mg·L⁻¹的微氧环境有利于 AOB 的增殖和 NOB 的抑制,同时仍会存在一定程度的反硝化作用。

在阶段 II 中,停止NO₂的添加,并通过逐渐增加NH⁺₄-N 的进水质量浓度以提升 CANON 工艺的 进水氮负荷,发现该阶段 anammox 菌生长所需的NO₂⁻-N 完全可以由 AOB 提供,且 NRE 一直维持 在 70.12% 左右,无NO₂⁻N 和NO₃⁻N 的明显累积现象。仅在第 102 d 时,由于 DO 在线控制器故障, 持续过量曝气约 12 h,导致污泥大量流失,DO 达 6.84 mg·L⁻¹ 左右。此时,FNA 质量浓度率先剧增 至 150.56 mg·L⁻¹,随后于 1 d 内降至 10 μ g·L⁻¹ 以下,而 FA 质量浓度却渐增至 26.52 mg·L⁻¹,并持续 约 5 d,导致 NRE 由 70.10% 迅速降至 24.69%,出水 NH⁺₄-N 和 NO₂⁻N 分别达到 965.6 mg·L⁻¹和 14.3 mg·L⁻¹。但经过约 14 d 的调整,控制 DO 约为 0.22 mg·L⁻¹,FA 为 5~20 mg·L⁻¹,反应器在 122 d 时 NRE 已恢复至 70.14%。上述结果表明,由 anammox 向 CANON 工艺转化的过程受 DO 和 FA 影响 较大,需要控制 DO 为 0.2~0.5 mg·L⁻¹,FA 为 5~20 mg·L⁻¹。YANG 等¹¹⁵¹指出,CANON 工艺在强碱 冲击条件下,通过控制 FA<15 mg·L⁻¹,可以快速恢复其中的 anammox 过程。在阶段 III 中,在进水 NH⁺₄-N 约为 2 000 mg·L⁻¹ 的情况下,反应器 NH⁺₄-N 去除率和 NRE 分别稳定在 91.21% 和 82.77% 左 右。该结果远优于有关文献报道的结果¹⁴⁰⁻⁴¹,这说明 CANON 工艺已顺利启动运行。

2.3 CANON 工艺启动过程中氮转化路径变化及 FA 和 FNA 对氮转化速率的影响

1) CANON 工艺启动过程中氮转化路径变化。由图 4 可看出,在阶段 I,随着NH₄-N 质量浓度

图 4 CANON 启动过程中 NRR、AOR、NOR 及NH₄⁺-N 转化路径比的变化

Fig. 4 Variations in NRR, AOR, NOR and the ratio of NH₄⁺-N removal pathway during the start-up of CANON process

的提升,NRR 始终稳定于 (0.47±0.04) kg·(m³·d)⁻¹,而 AOR 则逐渐增加至 0.28 kg·(m³·d)⁻¹。同时,由 图 4(d) 可看出,该阶段通过亚硝化过程转化NH⁴₄-N 的路径比自开始曝气逐渐增加,至适应阶段 末,anammox 和亚硝化的NH⁴₄-N 转化路径比稳定于 0.85 左右。这是适应阶段 CANON 工艺中微生物 演替的结果。在阶段 II,NRR 和 AOR 均随NH⁴₄-N 质量浓度的提升而逐渐增加,相应地分别从 0.47 kg·(m³·d)⁻¹和 0.29 kg·(m³·d)⁻¹逐渐增加到 1.37 kg·(m³·d)⁻¹和 0.94 kg·(m³·d)⁻¹,于稳定阶段 NRR 达 1.65 kg·(m³·d)⁻¹。但由图 (4)可以看出,NH⁴₄-N 质量浓度为 1 400 mg·L⁻¹时,NRR 和 AOR 数据较分 散,正是因为该阶段曝气装置故障所致。在阶段 II,anammox 和亚硝化途径对NH⁴₄-N 的转化路径 比依然稳定在 0.73 左右。另外,整个实验过程中,NOR 都为负值,且呈现逐渐下降的状态,表明 0.2~0.5 mg·L⁻¹的 DO 条件,可以很好地实现对 NOB 的抑制,但仍有部分反硝化作用存在^[38]。

2) CANON 工艺启动过程中 FA 和 FNA 对氮转化速率的影响。为进一步探究 FA 和 FNA 对 CANON 工艺中氮转化速率的影响,本研究选取 CANON 启动过程中适应阶段和故障阶段的运行数 据,按照 FA (0~2、3~5、6~10、11~15、15~20、> 20 mg·L⁻¹)和 FNA (1~10、11~15、16~20、21~30、31~35、35~40、41~60、> 60 μ g·L⁻¹)的实际质量浓度进行区间划分,经深入分析后绘制小提琴图 (见 图 5)。由图 5(a)和图 5(c)可看出,FA 对 NRR 和 AOR 均起到低浓度促进、高浓度抑制的作用。在 FA<10 mg·L⁻¹时,NRR 和 AOR 均随 FA 的增加而增加、且呈现显著的相关性 (*P*<0.01);而当 FA> 10 mg·L⁻¹时,则 NRR 和 AOR 均与 FA 呈现负相关关系 (*P*<0.01)。但 NRR 和 AOR 在 FA 为 15~20 mg·L⁻¹的环境中,分别较 FA 为 6~10 mg·L⁻¹时平均下降了 20.92%和 20.55%;而在 FA>20 mg·L⁻¹的环境中,NRR 和 AOR 却较 FA 为 15~20 mg·L⁻¹时的相应值分别下降了 53.38%和 54.68%。该结果与 FA 对 anammox 菌活性影响的批次结果相近,表明在实际运行过程中,FA 为 5~20 mg·L⁻¹时,利于 anammox 向 CANON 工艺的转化。此外,如图 5(b)和图 5(d)所示,当 FNA≤20 μ g·L⁻¹时,

图 5 CANON 启动过程中 FA 和 FNA 对氮转化速率的影响

Fig. 5 Effect of FA and FNA on nitrogen conversion rate during the start-up of CANON process

NRR 和 AOR 均随 FNA 质量浓度增加而增加 (P<0.01);而当 FNA>20 µg·L⁻¹时,则与 NRR 和 AOR 无显著的相关关系 (P>0.05)。anammox 批次实验、anammox 向 CANON 工艺转化过程中水质变化以及 氮转化速率分析结果表明,将 FA 调控为 10~20 mg·L⁻¹,可促进 anammox 向 CANON 工艺的转化。

2.4 CANON 工艺启动中氮转化功能菌丰度变化

由图 6 可见, AOB 丰度随 CANON 工艺的 启动呈先上升后下降的趋势,并于 143 d 时达 到峰值,即 7.83×10¹¹ 拷贝数·g⁻¹ (均以 VSS 计), 之后因 NH⁴₄-N 质量浓度升高至 1 800 mg·L⁻¹ 以 上,导致 AOB 丰度有所下降,表明高质量浓 度的 NH⁴₄-N 对 AOB 具有一定的抑制作用。LI 等^[17] 的研究结果表明,高于 32.5 mg·L⁻¹ 的 FA 会 严重抑制 AOB 的生长。也有研究结果^[2,4,15] 表 明,相较于 AOB,高质量浓度的 NH⁴₄-N 更适合 于 anammox 菌的生长,使 2 种菌的氮转化过程 达到平衡状态,因此,CANON 工艺多应用于 高浓度 NH⁴₄-N 废水的治理。而 anammox 菌丰度 在 CANON 工艺启动过程中出现 2 次下降。首 先在 0~69 d,随着开始曝气,anammox 菌活性 受到抑制,丰度逐渐下降至 1.33×10¹⁰ 拷贝

数·g⁻¹;其次,在98~131 d,因曝气装置故障,污泥大量流失,导致 anammox 菌丰度再次下降了 41.31%,但随后丰度逐渐增加并稳定在 4.41×10¹⁰ 拷贝数·g⁻¹。尽管 anammox 菌丰度与 AOB 丰度相 差 1 个数量级,但 CANON 工艺的 NRR 一直处于提升状态,且 anammox 和亚硝化路径对NH⁺₄-N 的 转化比稳定在 0.73 左右。这可能是因为 AOB 分泌的代谢物促进了 anammox 菌代谢酶的活性,使其 在低丰度条件下呈现高的脱氮活性^[42-44]。至于 NOB,其丰度仅在适应阶段 (0~69 d)因开启曝气和较 低质量浓度的 FA 抑制而有所增加,但随后便逐渐降低至 4.38×10⁸ 拷贝数·g⁻¹ 左右。这可能是反应 器长期保持低 DO,且随着NH⁺₄-N 质量浓度增加,FA 对 NOB 的抑制增强所致^[17-18]。统计分析结果 表明,NOB 丰度与 FA 质量浓度呈显著的负相关关系 (*P*<0.05),而与 FNA 无显著相关性 (*P*>0.05)。

这与 LI 等^[17]的研究结果一致,他们指出 10~17 mg·L⁻¹的 FA 便会对 NOB 产生明显的抑制作 用。而 DNB 则如预期一样,随着 CANON 工艺 启动,丰度逐渐下降,最终仅为 5.64×10⁹拷贝 数·g^{-1[6]}。

2.5 CANON 工艺启动中微生物群落变化

1) 门水平物种的丰度分析。图 7显示, CANON工艺启动过程以 Chloroflexi、Proteobacteria、Bacteroidetes、Planctomycetes等为优势菌 门。其中, Chloroflexi可以降解碳水化合物和 细胞代谢物,在脱氮系统中对稳定颗粒结构起 关键作用^[45-46]。Proteobacteria 是参与脱氮的主 要菌群之一,包括 AOB、NOB 和 DNB^[46-47]。 Bacteroidete 是废水处理、厌氧消化污泥和土壤

图 7 CANON 工艺启动过程中在门水平上的菌群变化 Fig. 7 Variation of microbial flora at a phylum level during the start-up of CANON process

中普遍存在的菌门^[48-49],可以转化细胞代谢所产生的有机物为CO₂,为 anammox 菌提供无机碳源^[50-51]。 *Chloroflexi、Proteobacteria*和 *Bacteroidetes*均是常见的与 anammox菌共存的菌群^[52]。而 *Planctomycetes*则是 anammox菌所在的菌门^[47]。从测序结果来看,在 CANON 工艺启动过程中, *Planctomycetes*和 *Bacteroidetes* 丰度呈现逐渐上升的趋势,最终分别达 9.04%和 14.16%,这是 NRR 不断获得提升的重要原因。*Chloroflexi* 丰度则呈现先下降后上升的趋势,于 139 d 时导到最低,而 *Proteobacteria* 丰度与之完全相反。这可能是因为曝气后,系统 DO 升高引起部分厌氧微生 物失活,从而释放胞内物或分泌大量 EPS 等物质来保护自己^[53-54],*Chloroflexi*刚好以此为碳源生 长。之后,随着工艺的运行,这些物质被逐渐淘洗掉,而此时 *Proteobacteria* 中的 AOB 和 NOB 等 好氧微生物适宜在该 DO 环境中生长,故而导致 *Chloroflexi* 丰度下降、*Proteobacteria* 丰度增加的趋势。直到后期由于NH^{*}₄-N质量浓度过高,再次引起微生物的淘洗和 AOB 的抑制,使两菌门丰度变 化趋势互换。这与 qPCR 的结果相一致。CHEN 等^[55]发现,*Chloroflexi* 会优先利用衰变细菌的代谢 物,并有助于 COD 的去除。

2) 属水平物种的丰度分析。表 4 展示了 CANON 启动过程中前5种优势菌属和部分 AOB、 DNB 和 anammox 菌属的相对丰度。CANON 工 艺启动过程中, 以 Nitrosomonas、SM1A02、 Unidentified Anaerolineaceae、Truepera 和Arenimonas为优势菌属。Nitrosomonas作为 AOB 中的 优势菌属,可以消耗NH⁺-N和DO,为DNB 和 anammox 菌创造厌氧环境^[44,50]。有研究结果 表明, SM1A02 具有 anammox 能力, 可能是 种新的 anammox 菌株, 与 Candidatus Jettenia、 Brocadia 和 Kuenenia 共 同 构 成 anammox 菌 群^[42, 44, 56]。属层面的物种多样性结果显示, CANON 启动过程中, AOB 相对丰度先增加后 降低,于第139天达到峰值23.42%。Anammox 菌相对丰度则一直处于上升的趋势,该结果与 相同时期的 qPCR 结果相一致,进一步解释了 水质结果中NRR一直处于上升趋势的原因。 属层面 DNB 相对丰度结果也与 qPCR 检测结果 相同,一直处于下降趋势。所有这些检测结果 均表明 CANON 工艺已成功启动。

3 结论

1) DO≤0.5 mg·L⁻¹、pH 为 7.0~8.0、FNA 为

5~20 μg·L⁻¹ 和 FA 为 10~20 mg·L⁻¹ 的环境条件有利于 anammox 菌的活性维持;控制 DO 为 0.2~ 0.5 mg·L⁻¹、pH 为 7.0~7.2 和 FA 为 10~20 mg·L⁻¹,可以有效抑制 NOB 生长,促使 anammox 工艺顺利 转为 CANON 工艺,使其在进水NH^{*}₄-N 为 2 000 mg·L⁻¹ 的条件下,实现平均 82.77% 的 NRE 和最高 1.67 kg·(m³·d)⁻¹ 的 NRR。

2) 在 CANON 工艺转化过程中, AOB 和 anammox 菌协作共生, AOR 和 NRR 随NH⁺₄-N 质量浓度的提升稳步增加,分别达 0.98 kg·(m³·d)⁻¹ 和 1.60 kg·(m³·d)⁻¹ 左右,且 anammox 和亚硝化途径对NH⁺₄-N

表 4 CANON 工艺启动过程中部分菌属相对丰度的变化 Table 4 Changes in relative abundance of some genus during

the start-up of CANON process

茵属	相对丰度/%				
	0 d	77 d	139 d	162 d	
Nitrosomonas	0.46	19.33	23.42	18.95	
SM1A02	0.49	1.32	9.06	13.15	
Unidentified_Anaeroline aceae	12.26	2.38	4.47	2.18	
Truepera	0.14	0.23	7.16	5.3	
Arenimonas	0.15	0.11	7.7	9.2	
Thauera	0.02	0.06	0.02	0.01	
Denitratisoma	4.95	0.96	0.19	0.44	
Caldithrix	0.14	0.95	0.02	0.01	
Candidatus_Kuenenia	0.16	0	0	0.01	
Candidatus_Jettenia	0	0.06	0	0	
Candida-tus_Brocadia	0	0.04	0	0.01	
AOB	0.46	19.33	23.42	18.95	
Anammox	0.66	1.42	9.07	13.17	
DNB	5.11	1.98	0.23	0.46	

注:表中AOB主要指Nitrosomona; anammox菌为SM1A02、 Candidatus Jettenia、Candidatus Brocadia和Candidatus Kuenenia的

集合; DNB为Thauera、Denitratisoma和Caldithrix的集合。

的转化比稳定在 0.73 左右。

3) 由 anammox 转为 CANON 工艺过程中, anammox 菌和 AOB 基因丰度最终分别达 4.41×10¹⁰ 拷 贝数·g⁻¹和 1.81×10¹¹ 拷贝数·g⁻¹。Anammox 菌在 CANON 启动前期和高负荷条件下分别以 *Candidatus Kuenenia*和 *Candidatus Brocadia*为优势菌属, 而 SM1A02 作为可能的 anammox 菌属同氨氧化菌属 *Nitrosomona* 在启动过程中始终为优势菌属,最终 AOB 和 anammox 菌分别占细菌总数的 18.95% 和 13.17%。

参考文献

- [1] CONNAN R, DABERT P, MOYA-ESPINOSA M, et al. Coupling of partial nitritation and anammox in two- and one-stage systems: Process operation, N₂O emission and microbial community[J]. Journal of Cleaner Production, 2018, 203: 559-573.
- [2] LI X, ZHANG J, ZHANG X, et al. Start-up and nitrogen removal performance of CANON and SNAD processes in a pilotscale oxidation ditch reactor[J]. Process Biochemistry, 2019, 84: 134-142.
- [3] ZUO L, YAO H, LI H, et al. Modeling of completely autotrophic nitrogen removal process with salt and glycine betaine addition[J]. Chemosphere, 2021, 264(2): 128474.
- [4] HE S, ZHANG Y, NIU Q, et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock[J]. Ecological Engineering, 2016, 90: 50-56.
- [5] SLIEKERS A, THIRD K, ABMA W, et al. CANON and Anammox in a gas-lift reactor[J]. FEMS Microbiology Letters, 2003, 218(2): 339-344.
- [6] YUE X, YU G, LIU Z, et al. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254: 157-165.
- [7] PARK H, ROSENTHAL A, JEZEK R, et al. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities[J]. Water Research, 2010, 44(17): 5005-5013.
- [8] 刘竹寒, 岳秀, 于广平, 等. 单级全程自养脱氮工艺研究进展[J]. 水处理技术, 2017, 43(2): 8-13.
- [9] 李祥,黄勇,袁怡,等.不同泥源对厌氧氨氧化反应器启动的影响[J].环境工程学报,2012,6(7):2143-2148.
- [10] FENG X, WANG X, WANG R, et al. Zeolite biofilm aeration filter plays a pre-nitritation role in the autotrophic nitrogen removal from iron oxide red wastewater[J]. Journal of Chemical Technology and Biotechnology, 2020, 95(12): 3261-3269.
- [11] FANG F, LI K, GUO J, et al. New insights into nitrous oxide emissions in a single-stage CANON process coupled with denitrification: thermodynamics and nitrogen transformation[J]. Water Science and Technology, 2020, 82(1): 157-169.
- [12] RUIZ G, JEISON D, RUBILAR O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresource Technology, 2006, 97(2): 330-335.
- [13] XIAO P, AI S, ZHOU J, et al. N₂O profiles in the enhanced CANON process via long-term N₂H₄ addition: Minimized N₂O production and the influence of exogenous N₂H₄ on N₂O sources[J]. Environmental Science and Pollution Research, 2020, 27(30): 37188-37198.
- [14] LI G, CARVAJAL-ARROYO J, SIERRA-ALVAREZ R, et al. Mechanisms and control of NO₂⁻ inhibition of anaerobic ammonium oxidation (anammox)[J]. Water Environment Research, 2017, 89(4): 330-336.
- [15] YANG R, MAO W, WANG X, et al. Response and adaptation of microbial community in a CANON reactor exposed to an extreme alkaline shock[J]. Archaea-An International Microbiological Journal, 2020, 2020: 8888615.
- [16] HE S, NIU Q, MA H, et al. The treatment performance and the bacteria preservation of anammox: A review[J]. Water, Air and Soil Pollution, 2015, 226(5): 163.

- [17] LI S, CHEN Y, LI C, et al. Influence of free ammonia on completely autotrophic nitrogen removal over nitrite (CANON) process[J]. Applied Biochemistry and Biotechnology, 2012, 167(4): 694-704.
- [18] VADIVELU V, YUAN Z, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture[J]. Environmental Science & Technology, 2006, 40(14): 4442-4448.
- [19] PUYOL D, CARVAJAL-ARROYO J, SIERRA-ALVAREZ R, et al. Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions[J]. Biotechnology Letters, 2014, 36(3): 547-551.
- [20] ZHANG Y, HE S, NIU Q, et al. Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor[J]. Biochemical Engineering Journal, 2016, 109: 212-221.
- [21] WAKI M, TOKUTOMI T, YOKOYAMA H, et al. Nitrogen removal from animal waste treatment water by anammox enrichment[J]. Bioresource Technology, 2007, 98(14): 2775-2780.
- [22] YANG R, WANG X, GUO Y, et al. Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis[J]. Bioprocess and Biosystem Engineering, 2020, 43(4): 625-636.
- [23] HENDRICKX T, KAMPMAN C, ZEEMAN G, et al. High specific activity for anammox bacteria enriched from activated sludge at 10 °C[J]. Bioresource Technology, 2014, 163: 214-221.
- [24] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
- [25] LIU W, YANG Q, MA B, et al. Rapid achievement of nitritation using aerobic starvation[J]. Environmental Science & Technology, 2017, 51(7): 4001-4008.
- [26] YU R, CHANDRAN K. Strategies of *Nitrosomonas europaea* 19718 to counter low dissolved oxygen and high nitrite concentrations[J]. BMC Microbiology, 2010, 10(1): 70.
- [27] BRAKER G, FESEFELDT A, WITZEL K. Development of PCR primer systems for amplification of nitrite reductase genes (*nirK* and *nirS*) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998, 64(10): 3769-3775.
- [28] GRAVE R, DA SILVEIRA NICOLOSO R, CASSOL P, et al. Determining the effects of tillage and nitrogen sources on soil N₂O emission[J]. Soil and Tillage Research, 2018, 175: 1-12.
- [29] WANG Y, MA X, ZHOU S, et al. Expression of the *nirS*, *hzsA*, and *hdh* genes in response to nitrite shock and recovery in Candidatus Kuenenia stuttgartiensis[J]. Environmental Science & Technology, 2016, 50(13): 6940-6947.
- [30] MIAO Y, ZHANG L, LI B, et al. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrificationanammox system treating low-strength sewage under intermittent aeration condition[J]. Bioresource Technology, 2017, 231: 36-44.
- [31] PARK M, PARK H, CHANDRAN K. Molecular and kinetic characterization of planktonic *Nitrospira* spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.
- [32] ZHANG Z, CHEN S, WU P, et al. Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR)[J]. Bioresource Technology, 2010, 101(16): 6309-6314.
- [33] VDZQUEZ-PADIN J, MOSQUERA-CORRAL A, CAMPOS J, et al. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor[J]. Water Research, 2010, 44(15): 4359-4370.
- [34] YUE X, YU G, LIU Z, et al. Start-up of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter and the effect of inorganic carbon on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254: 347.
- [35] YUE X, YU G, LU Y, et al. Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely

autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter[J]. Bioresource Technology, 2018, 254: 67-74.

- [36] HUYNH T, NGUYEN P, PHAN T, et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater[J]. International Biodeterioration & Biodegradation, 2019, 136: 15-23.
- [37] 李亚峰, 秦亚敏, 谢新立, 等. 间歇曝气条件下短程硝化的实现及影响因素研究[J]. 环境工程学报, 2011, 5(7). 1518-1521.
- [38] YONG M, PENG Y, WANG S, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant[J]. Water Research, 2009, 43(3): 563-572.
- [39] CEMA G, SZATKOWSKA B, PLAZA E, et al. Nitrogen removal rates at a technical-scale pilot plant with the one-stage partial nitritation/Anammox process[J]. Water Science & Technology, 2006, 54(8): 209.
- [40] MAO N, REN H, GENG J, et al. Engineering application of anaerobic ammonium oxidation process in wastewater treatment[J]. World Journal of Microbiology & Biotechnology, 2017, 33(8): 153.
- [41] ZHANG F, PENG Y, WANG S, et al. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate[J]. Journal of Hazardous Materials, 2019, 364: 163-172.
- [42] CHU Z, WANG K, LI X, et al. Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing[J]. Chemical Engineering Journal, 2015, 262: 41-48.
- [43] KOMPANTSEVA E, KUBLANOV I, PEREVALOVA A, et al. *Calorithrix insularis* gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1486-1490.
- [44] TIAN S, TIAN Z, YANG H, et al. Detection of viable bacteria during sludge ozonation by the combination of ATP assay with PMA-Miseq sequencing[J]. Water, 2017, 9(3): 166.
- [45] LEAL C, PEREIRA A, NUNES F, et al. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure[J]. Bioresource Technology, 2016, 211: 257-266.
- [46] KONG Q, HE X, FENG Y, et al. Pollutant removal and microorganism evolution of activated sludge under ofloxacin selection pressure[J]. Bioresource Technology, 2017, 241: 849-856.
- [47] WANG Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521.
- [48] CONNAN R, DABERT P, KHALIL H, et al. Batch enrichment of anammox bacteria and study of the underlying microbial community dynamics[J]. Chemical Engineering Journal, 2016, 297: 217-228.
- [49] SHU D, HE Y, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196: 621-633.
- [50] SPETH D, GUERRERO-CRUZ S, DUTILH B, et al. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system[J]. Nature Communications, 2016, 7: 11172.
- [51] WANG Z, ZHANG X, HUANG K, et al. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant[J]. PloS One, 2013, 8(10): e76079.
- [52] KINDAICHI T, YURI S, OZAKI N, et al. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor[J]. Water Science and Technology, 2012, 66(12): 2556-2561.
- [53] ALAGELY A, KREDIET C, RITCHIE K, et al. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens[J]. ISME Journal, 2011, 5(10): 1609-1620.

- [54] WANG C, LIU S, XU X, et al. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate[J]. Applied Microbiology & Biotechnology, 2017, 101(9): 3821-3828.
- [55] CHEN C, SUN F, ZHANG H, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578.
- [56] CUI Y, ZHANG H, LU P, et al. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process[J]. Scientific Reports, 2016, 6: 30766.
- (责任编辑:曲娜)

Regulation strategies and microbial response characteristics in the transformation process from anammox to CANON

MAO Wenlong^{1,2,3}, YANG Ruili², WANG Xiaojun^{2,*}, ZHANG Zhaoji², WU Junbin², CHEN Shaohua²

1. School of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author, E-mail: xjwang@iue.ac.cn

Abstract To explore the microbial response characteristics during the start-up and the high-load operation phase and determine the effective regulation strategy of the completely autotrophic nitrogen removal over nitrite (CANON) process, a stable anaerobic ammonium oxidation (anammox) system was conducted by adjusting the environmental factors (DO, pH and free ammonia), gradually reducing the concentration of nitrite and increasing the concentration of ammonia, then its transformation to CANON process was completed. The results showed that when the free ammonia was $10~20 \text{ mg} \cdot \text{L}^{-1}$, DO was $0.2~0.5 \text{ mg} \cdot \text{L}^{-1}$, and pH was 7.0~7.2, the growth of nitrite oxidation bacteria was inhibited, the ammonia oxidation rate and nitrogen removal rate could be gradually improved to 0.98 and 1.60 kg (m³·d)⁻¹, respectively, and start-up of CANON was successfully completed. In addition, the NH₄⁺-N transformation ratio of anammox and nitrification pathway was finally stable at about 0.73. High concentration (>1 800 mg \cdot \text{L}^{-1}) of ammonia increased the abundance of anammox, but had an opposite effect on the ammonium oxidizing bacteria. The *Candidatus Kuenenia* and *Candidatus Brocadia* were the main genera of anammox bacteria under the early stage of the start-up and high-load condition, respectively. However, the *SM1402*, as a possible genus of anammox bacteria, and *Nitrosomonas*, as a genus of AOB, were always the main genera during the start-up.

Keywords completely autotrophic nitrogen removal over nitrite; pathway of NH₄⁺-N removal; free ammonia; microbial characteristics; nitrogen removal rate

