

Environmental Engineering

第 15卷第 10期 2021年 10月 Vol. 15, No.10 Oct. 2021

(www) http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

me (010) 62941074

📱 文章栏目:水污染防治

DOI 10.12030/j.cjee.202106112 中图分类号 X703.1 文献标识码

朴玮玲, 于丹阳, 孙承林, 等. MnO_x@TiO₂ 常压催化湿式空气氧化硫代硫酸钠[J]. 环境工程学报, 2021, 15(10): 3223-3232. PIAO Weiling, YU Danyang, SUN Chenglin, et al. Catalytic wet air oxidation of sodium thiosulfate under atmospheric pressure with MnO_x@TiO₂[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3223-3232.

MnO_x@TiO₂常压催化湿式空气氧化硫代硫酸钠

朴玮玲, 于丹阳, 孙承林, 孙文静

中国科学院大连化学物理研究所,大连116023

第一作者:朴玮玲(1994—),女,硕士。研究方向:工业废水处理技术。E-mial: piaoweiling@dicp.ac.cn ⊠通信作者:孙文静(1992—),女,博士,助理研究员。研究方向:催化氧化工业废水与过程模拟。E-mail: sunwenjing@dicp.ac.cn

摘 要应用 MnO_x@TiO₂ 催化剂在常压条件下催化湿式空气氧化高浓度硫代硫酸钠,分别考察了空气气量、反应温度和反应时间对高浓度硫代硫酸钠转化率的影响,并采用 XRF、XRD、XPS、NH₃-/O₂-TPD、H₂-TPR、BET 对使用前后的催化剂进行了分析和表征。结果表明,通入空气中的氧气含量在过量的情况下,气量对硫代硫酸钠的转化影响不大。硫代硫酸钠的转化率随着反应时间的增加而升高;在65~85℃内,硫代硫酸钠的转化率先增大后减小。使用 Mn 负载质量分数为 2% 的催化剂,使用硫代硫酸钠为模型底物,当S₂O₃²⁻质量浓度为 10 000 mg·L⁻¹时,最佳反应条件为气量 50 mL·min⁻¹、反应时间 25 h、反应温度 75 ℃,硫代硫酸钠转化率可达到 96%。催化剂表征结果表明,MnO_x@TiO₂表面存在多种形态的锰氧化物,其中主要活性成分为 Mn₂O₃,硫代硫酸钠的氧化过程伴随着催化剂表面 Mn³⁺到 Mn²⁺的电子转移。同时,MnO_x@TiO₂表面的各种锰氧化物为S₂O₃²⁻与 O₂之间的电子转移提供了更多位点,而这种电子转移也导致催化剂表面氧缺陷的增加。这些结果证明了 MnO_x@TiO₂常压催化湿式空气氧化硫代硫酸钠的可行性,为含硫废碱液高效、经济的预处理技术的开发提供了可能性。

关键词 MnO_x@TiO₂; 硫代硫酸钠; 常压; 催化湿式空气氧化

石油化工企业在炼油和化工生产过程中,会排放出大量含有高浓度硫化物(主要为 Na₂S,质量 百分比 0.5%~5%^[1])、高 COD 的强碱性废液。此类废碱液具有强烈的恶臭^[2]、较大的毒性且不易被 处理,同时会造成严重的二次污染^[3]。因此,必须将此类废水中有毒的低价硫化物转化成无毒、无 二次污染的高价态硫酸盐后才能进入后续的处理过程。

目前国内外含硫废碱液处理主要有中和法、综合利用法、氧化法、沉淀法和生物强化法^[4]。中 和法即使用酸调整溶液 pH 至中性或酸性,使硫化氢释放,而后将废气燃烧或用作他用,但存在废 气处理和高含盐量的酸性废水处理问题。综合利用即结晶回收硫化钠,再将硫化钠综合利用,但 废水中的有机物和其他物质会影响硫化钠的结晶纯度。氧化法即使用空气、氧气、过氧化氢等作 为氧化剂,在催化剂或无催化剂作用下将低价硫氧化。沉淀法即采用过渡金属盐与硫化钠生成沉 淀,而后将硫化物沉淀分离,沉淀法同样会受废水中其他无机盐的影响使沉淀的盐不纯。生物法 需要大量水 (6 倍以上)稀释,只适用于低浓度废碱液处理,故存在局限性。氧化法相比其他方法

收稿日期: 2021-06-23; 录用日期: 2021-09-14

基金项目:延长石油-大连化物所探索性科研项目(E037550902);辽宁省博士科研启动基金计划项目(2020-BS-012)

适用范围广、氧化效率高、无二次污染。

氧化法处理废碱液中最常用的是湿式空气 氧化法。湿式空气氧化工艺是在一定温度和压 力条件下,以空气中的氧作为氧化剂对污水中 的污染物进行水相氧化的处理技术^[5]。根据处 理温度和是否加入催化剂分为低温湿式氧化、 中温湿式氧化、高温湿式氧化、催化湿式氧化 4类,具体如表1所示。

上述工艺均需要加压,并且反应温度超过 了 100 ℃,在工程中,加温加压将会提高对设 备的压力等级要求、降低操作的安全性、增加 能源的消耗。为了降低能耗和设备的压力等 级,近期,有催化空气氧化工艺在小于 100 ℃ 下处理废碱液的报道,详见表 2。

但上述研究的重点均在废碱液中硫化钠的 初步氧化去除上,并没有对废碱液中本身存在

表1 湿式空气氧化脱硫工艺汇总

 Table 1
 A summary of desulfurization process with wet air oxidation process

工艺类型	代表公司	反应温度/℃	反应压力/MPa
低温湿式氧化	美国斯通韦伯	115	0.7
中温湿式氧化	西门子	200	3.2
高温湿式氧化	西门子	260	8.6
催化湿式氧化	德国拜尔	220	8.6

表 2 催化空气氧化脱硫效果汇总

 Table 2
 A summary of desulfurization effect with catalytic air oxidation process

			_
催化剂	反应温度/℃	去除结果	来源
自制催化剂(过渡金属高价离子)	85	达到脱臭目的	[6]
MnO ₂	45	S ²⁻ 去除率99.7%	[7]
铁锰复合催化剂	60	S ²⁻ 去除率98.9%	[<mark>8</mark>]

以及初步氧化后生成的高浓度硫代硫酸钠的去除进行讨论。在实际废碱液处理过程中,硫代硫酸钠的存在很大程度影响了后续盐分离的处理效果,从而影响后续生化。因此,针对含硫废碱液中硫代硫酸钠氧化困难的实际问题,本研究的重点为开发一种小于100℃常压催化湿式空气氧化硫代硫酸钠的脱硫工艺,通过高效脱硫催化剂提高低价硫的氧化效率和氧化深度,实现高效、经济的氧化硫代硫酸钠。

TiO₂作为载体被广泛应用于催化湿式氧化及其他工业催化过程,具有高强度及耐酸碱等特点; Mn 具有+2、+3、+4、+7等多种价态,可以形成不同性质的稳定氧化物,在催化反应中能够通过不同价态 Mn 的催化循环表现出优异的氧化还原能力^[9-10],锰基催化剂常被用作氧化还原反应的催化剂,如 NH₃-SCR(selctive catalytic reduction)^[11-12]。

基于上述研究结果,本研究应用 MnO_x@TiO₂ 作为催化剂,实现常压条件下对硫代硫酸钠的催 化氧化,使硫代硫酸钠在较短时间内氧化生成易于后续盐-水分离的亚硫酸钠及硫酸钠。同时考察 气量、反应温度、反应时间等反应条件对硫代硫酸钠转化率的影响。

1 材料与方法

1.1 催化剂的制备

测试载体 TiO₂ 的吸水率,称取一定量硫酸锰 (AR,上海吉至生化科技有限公司)溶解于一定量 去离子水中,等体积浸渍一晚,得到中间体 A。将 A 放入 120 ℃ 烘箱中完全烘干,所得样品放入 马弗炉内在 450 ℃ 空气气氛中焙烧 4 h,最终得到 Mn 质量分数为 2% 的 MnO_x@TiO₂。

1.2 催化剂的表征

载体及使用前后的催化剂研磨成粉末作为待测样品。采用荷兰 PANAlytical 公司生产的 Zetium 型 X 射线荧光光谱仪 (XRF)进行元素分析。X-射线衍射测试采用荷兰 PANAlytical 公司生产 的 Empyrean-100 型 X 射线粉末衍射仪 (XRD),陶瓷 X 光管 Cu 辐射源 (K_{a2}/K_{a1} =0.5),扫描角度 2 θ 为 10°~90°,扫描时间为 10 min,扫描步长为 0.026°。采用美国 ThermoFisher 公司生产的 Thermo ScientificTM K-AlphaTM XPS 能谱仪进行 X-射线光电子能谱 (XPS) 表征。采用 Aventage 软件对曲线进 行分峰拟合,背景扣除方式为 Shirley 背景。采用 NH₃-TPD 研究催化剂表面酸性活性位量,使用浙 江泛泰仪器有限公司 FINESORB-3010 型装置,取 100 mg 左右样品粉末,150 ℃下 Ar 气氛预处理 2 h,使用 NH₃体积分数为 1%的 NH₃/Ar(20 mL·min⁻¹)混合气常温吸附 2 h 至饱和,于 Ar 气氛下以 10 ℃·min⁻¹ 升温至 500 ℃ 脱附,记录 NH₃-TPD 图谱。采用 O₂-TPD 研究催化剂表面对氧气的吸附性 能,使用浙江泛泰 FINESORB-3010 型装置,取 100 mg 左右样品粉末,150 ℃下 Ar 气氛预处理 2 h,使用 O₂ 体积分数为 10%的 O₂/Ar(20 mL·min⁻¹)混合气在 75 ℃ 进行 2 h 吸附,于 Ar 气氛下 10 ℃·min⁻¹ 升温至 800 ℃ 脱附,记录 O₂-TPD 图谱。采用 H₂-TPR(浙江泛泰 FINESORB-3010) 研究催化剂氧化还 原性能,取 50 mg 左右样品粉末,常温 Ar 气氛下吹扫 100 min,使用 H₂体积分数为 10%的 H₂/Ar (20 mL·min⁻¹)混合气以 10 ℃·min⁻¹ 升温至 800 ℃ 进行还原,记录 H₂-TPR 图谱。比表面积的测试使 用浙江泛泰 FINESORB-3010 型装置,采用单点法进行测试,取约 500 mg 样品粉末,通过 N₂ 低温 吸附常温脱附和 BET 方程计算得到比表面积。

1.3 催化剂评价

常压催化湿式氧化硫代硫酸钠的活性测试 在鼓泡床反应器中进行,反应装置如图1所 示。该装置主要分为3部分:气路系统、反应 系统及冷却系统(防止溶液挥发)。反应器中装 入 50 mL 催化剂和 35 mL 模型水,使用单独的 硫代硫酸钠溶液作为模型底物,模型水中 S₂O₃²⁻质量浓度为 10 000 mg·L⁻¹,待空气流量与 温度稳定后开始反应计为反应零点。

每次反应结束后,出水使用 0.45 μm 滤头 进行过滤,采用间接碘量法^[13] 测定每次出水水 样中 S₂O₃²⁻和 SO₃²⁻质量浓度。使用体积比 1:1 甲醛溶液屏蔽水样中SO₃²⁻,在酸性条件下使用 稀释 50 倍的碘标准溶液 (C(1/2I₂)=0.1 mol·L⁻¹) 滴定一定量稀释水样由无色变为浅蓝色计为反

应终点,计算出S₂O₃²⁻的质量浓度。在一定量稀释水样中加入过量碘标准溶液,在酸性条件下使用 硫代硫酸钠标准溶液 (*c*(Na₂S₂O₃)=0.1 mol·L⁻¹) 滴定剩余碘至溶液无色计为反应终点,计算得S₂O₃²⁻和 SO₃²⁻质量浓度之和,差值为SO₃²⁻质量浓度。滴定过程发生的主要化学反应如式 (1)~式 (2) 所示。

$$2S_2O_3^{2-} + I_2 \to S_4O_6^{2-} + 2I^-$$
(1)

$$SO_3^{2-} + I_2 + H_2O \rightarrow SO_4^{2-} + 2I^- + 2H^+$$
 (2)

1.4 催化剂的稳定性分析

本研究所有反应均使用同一批次催化剂,每次使用后清洗干燥进行再生。催化剂使用过程中 Mn的溶出量采用美国 PerkinElmer 公司生产的 Optima 7300DV 型电感耦合等离子体发射光谱仪 (ICP)进行分析。

2 结果与讨论

2.1 $MnO_x@TiO_2$ 催化氧化硫代硫酸钠活性探究

1) 空气气量的影响。在反应温度 65 ℃、反应时间 50 h 的条件下,在 5~50 mL·min⁻¹ 内不同气量条件下硫代硫酸钠转化率(以S₂O₃²⁻计)见图 2。由图 2 可见,通入空气中氧气含量过量(经计算至少过量 7.8 倍),硫代硫酸钠的转化率可达 96%,但不随气量的增加而升高,说明通过加大气量提

高的传质水平已达上限。同时, MnO_x@TiO₂ 催 化剂对亚硫酸钠的氧化也表现出了较好的催化 效果,在通入气量为50 mL·min⁻¹时氧化产物中 的SO₃²⁻质量浓度均在500 mg·L⁻¹以下,说明大 部分低价硫转化生成了硫酸钠。可见,当空气 量在5~50 mL·min⁻¹内,即空气过量的条件下 气量对 MnO_x@TiO₂活性的影响不大,通入气 量为50 mL·min⁻¹时最有利于硫代硫酸钠的深 度氧化。

2)反应时间的影响。图 3 为反应温度 65 °C、 空气气量 50 mL·min⁻¹的条件下,在 25~75 h内 反应时间对硫代硫酸钠转化率 (以 $S_2O_3^2$ -计)的 影响。由图 3 可知,反应时间对硫代硫酸钠的 转化有较大影响,硫代硫酸钠的转化率随反应 时间的增加而升高,反应 50 h 后硫代硫酸钠的 转化率即可达到 96%,同时出水中SO₃²⁻的质量 浓度为 518 mg·L⁻¹。当反应时间延长至 75 h 时,硫代硫酸钠基本完全转化,出水中还存在 少量的SO₃²⁻,说明反应时间由 50 h 延长到 75 h 时会发生硫代硫酸钠氧化和亚硫酸钠氧化的竞 争反应。由此研究结果可知,反应时间对 MnO_x@TiO₂的活性影响较大,在此系统中最佳 反应时间为 50 h。

3) 反应温度的影响。在反应时间为 25 h、 空气气量为 50 mL·min⁻¹的条件下,反应温度 对硫代硫酸钠 (以S₂O₃²⁻计)转化率的影响结果 见图 4。由图 4 可见,硫代硫酸钠的催化氧化 反应对温度敏感,在 65~85 ℃ 内转化率首先随 着温度的升高而升高,在 75 ℃转化率达到最 高 (96%),当温度升高至 85 ℃ 时转化率反而下 降。温度升高有利于提高氧化效率,但是温度 升高也会导致氧气溶解度降低,在温度和溶解 氧的共同作用下,反应温度为 75 ℃ 时氧化效 率最高。

2.2 硫代硫酸钠转化率分析

对最佳反应条件下(反应温度 75 ℃、反应 时间 25 h、空气气量 50 mL·min⁻¹)不同因素对 硫代硫酸钠转化的作用进行了讨论。通过空白 反应(玻璃珠替代催化剂)考察空气氧化作用, 此时硫代硫酸钠转化率(以S₂O₃²⁻计)仅为 4%;

加入载体对硫代硫酸钠转化率的提高了 1%;使用 ICP 分析 MnO_x@TiO₂ 在最佳反应条件下 Mn 的溶 出量为 190.5 mg·L⁻¹,在 Mn²⁺(使用 MnSO₄ 为前驱体)质量浓度为 190.5 mg·L⁻¹ 的均相催化系统中, 硫代硫酸钠的转化未见提高。硫代硫酸钠在最佳反应条件下转化率为 96%。其中,空气氧化对硫 代硫酸钠转化的贡献率为 4.17%;吸附剂载体对硫代硫酸钠的吸附率为 1.04%;而溶出 Mn²⁺对硫代 硫酸钠的转化没有影响;多相催化湿式空气氧化对硫代硫酸钠转化的贡献比重占 94.79%。

当硫代硫酸钠模型废水S₂O₃²⁻质量浓度为 10 000 mg·L⁻¹,硫代硫酸钠转化率在最佳条件 下为 96%。由图 5 可知,在最优条件下 92.5% 的低价态硫均被氧化为最高价态的硫酸根。

2.3 催化剂表征

1) XRF 表征。由表 3 的 XRF 元素分析结 果可见, TiO,载体本身不含Mn,载体在经过 浸泡-烘干-煅烧后负载 Mn, 其质量分数 1.9%, 基本符合理论值 2%。催化剂在经过共 300 h 的使用后, Mn质量分数仅剩0.2%, 较使用前 流失 1.7%, 但 Mn 的流失并未影响催化剂对硫 代硫酸钠催化氧化的活性,同图5中硫代硫酸 钠转化率分析结果一致,即均相 Mn²⁺不起作 用,主要起催化作用的是多相催化剂 MnO,@TiO,。 由此可见, Mn 质量分数为 0.2% 的 MnO.@TiO, 催化剂活性就足以在此半连续反应系统中处理 S₂O₃²⁻质量浓度高达 10 000 mg·L⁻¹ 的硫代硫酸 钠废液。使用前 MnO_x@TiO₂ 主要杂质元素为 S, 其质量分数为0.7%, 使用后主要杂质为Na, 其质量分数为0.5%。但杂质元素未对催化剂活 性产生影响。

2) XRD 表征。TiO₂ 及 MnO_x@TiO₂ 使用前 后的 XRD 衍射图谱如图 6 所示。由图 6 可以看 出,载体及使用前后的催化剂均有明显的锐钛 矿型 TiO₂ 的特征峰。MnO_x@TiO₂ 使用前后的 衍射图谱基本重叠,可以说明 MnO_x@TiO₂ 在 使用过程中未发生晶体结构上的改变,表现出 良好的催化剂稳定性。使用前后的 MnO_x@TiO₂ 衍射图谱中并未出现锰氧化物的特征峰,这可 能是因为 MnO_x 质量分数较低或 MnO_x 以无固 定形态在载体表面均匀分散。为进一步确定催 化剂表面 Mn 价态和催化剂表面组成,对样品 进行 XPS 表征。

3) XPS 分析。催化剂表面元素种类、价态 及氧物种是影响催化剂活性的重要因素。图 7

表 3 TiO₂和 MnO_x@TiO₂使用前后的 XRF 元素分析结果

Table 3Elemental analyses of TiO_2 and $MnO_x@TiO_2$ before and after the reaction

你心之	质量分数/%				
准化加 -	Ti	0	Mn	其他	
TiO ₂	59.3	40.0	0	0.6	
MnO _x @TiO ₂ 使用前	56.9	39.9	1.9	1.4	
MnO _x @TiO ₂ 使用后	58.6	39.9	0.2	1.3	

图 6 TiO₂和 MnO_x@TiO₂使用前后的 XRD 衍射图谱

Fig. 6 XRD patterns of TiO_2 and $MnO_x@TiO_2$ before and after the reaction

为 MnO_x@TiO₂使用前后的 XPS 谱图,图 7(a)为 MnO_x@TiO₂使用前后的全谱图。可以看出,使用前的 MnO_x@TiO₂表面主要出现 Ti2p、O1s、Mn2p和 S2p峰,使用后 S2_p峰基本消失,出现 Na1s峰,其结果与 XPF 结果 (表 3)相符。因 Mn 负载量较小,扫描出的 Mn3s 谱图信噪比较差,因此,不在此列出。

为确定催化剂表面 Mn 价态,对 Mn2p 谱图进行分峰拟合 (图 7(b))。Mn2p 图谱因能级分裂产生 2 个分裂峰: Mn2p_{3/2}和 Mn2p_{1/2}。使用前后 MnO_x@TiO₂的 Mn2p_{3/2}可拟合出 3 个峰,说明催化剂表面存在多种价态的 Mn,分别对应 Mn²⁺(640.4~641.0 eV)、Mn³⁺(642.4~642.7 eV)以及 Mn⁴⁺(644.1~644.6 eV),在 646.6 eV 处出现伴峰。Mn³⁺和 Mn⁴⁺的结合能明显高于理论值 (641.7±0.2) eV 和 (643.0±0.2) eV^[14-15],这种结合能的偏移是由 MnO_x与 TiO₂载体的相互作用导致的。为了对催化剂表面 Mn 价态和组成的比例进行分析,对拟合峰进行积分,结果汇总于表 4。催化剂使用前后 Mn⁴⁺原子百分比在 8%~9% 保持不变,Mn²⁺原子百分比由 46% 升到 54%,而 Mn³⁺原子百分比由 23% 降到 16%。以上结果说明,在此催化系统中催化剂活性主要依赖于表面 Mn²⁺与 Mn³⁺之间的催化循环,催化剂中的 Mn³⁺在反应中被还原,起到了氧化位点作用。

表 Table 4 XP	表 4 MnO _x @TiO ₂ 使用前后 XPS 结果					
		迎行的2 before and 键合能/eV				
催化剂	Mn ²⁺	Mn ³⁺	Mn ⁴⁺	Οβ	$(Mn^{37}/Mn^{37})/\%$	(U _β /U)/%
MnO _x @TiO ₂ 使用前	640.4	642.7	644.6	531.5	23	15
MnO _x @TiO ₂ 使用后	641.0	642.4	644.1	531.3	16	10

图 7(c) 为 MnO_x@TiO₂使用前后 O1s 的 XPS 谱图。O1s 的峰可分为 2 个峰^[16],在低结合能处的 峰 (529.4~529.7 eV)可归属于表面晶格氧 Oα,在高结合能处的峰则归属于化学吸附氧 O_β(531.3~ 531.5 eV),主要以氧缺陷的形式存在 (O₂²⁻和 O^{-[17]})。结合表 4 可见,MnO_x@TiO₂ 在使用后,O_β峰占 比降低,Oα峰占比升高,说明催化剂表面化学吸附氧物种在硫代硫酸钠的氧化过程中可能转化为 晶格氧。

图 7(d) 为 MnO_x@TiO₂使用前后 S2p 的 XPS 谱图。S2p 的峰可分为 4 个峰^[18],结合能由小到大 分别为 S⁴⁺2p_{3/2}、S⁶⁺2p_{3/2}、S⁴⁺2p_{1/2}、S⁶⁺2p_{1/2}。使用前 MnO_x@TiO₂ 表面主要检测到 S⁶⁺2p_{3/2} 峰及 S⁶⁺2p_{1/2} 峰,说明 S 在使用前的 MnO_x@TiO₂ 表面以硫氧化物的形态存在。反应后的 MnO_x@TiO₂ 表面几乎检 测不到 S2p 峰,可以推断,经 MnSO₄溶液浸泡、450 ℃ 空气气氛焙烧后的 MnO_x@TiO₂ 表面仍有未 完全转化为 MnO_x 的 MnSO₄存在,而这些 MnSO₄ 随反应过程中的反复冲洗洗涤脱落,证明起到催 化活性的不是 MnSO₄ 而是 MnO_x,这与硫代硫酸钠转化率分析结果一致。

4) O₂-/NH₃-TPD 分析。催化剂表面氧气吸附性能和表面酸性是影响催化剂活性的 2 个重要因素。采用 O₂-TPD 研究 MnO_x@TiO₂ 表面对氧气的吸附性能。一般来说,在 O₂-TPD 测试中,低于 400 ℃ 的脱附峰可归属为表面吸附氧 (O_β) 的脱附峰;而高于 400 ℃ 的脱附峰可归属于晶格氧 (Oα) 的脱附峰^[19]。由图 8(a) 可见,TiO₂ 的 O₂-TPD 图谱的脱附峰信号非常弱,这说明 TiO₂ 表面吸附 氧物种量非常少可忽略。通过负载 MnO_x,低温区出现 O₂ 脱附峰,MnO_x@TiO₂ 表面可以吸附氧物 种。使用后 MnO_x@TiO₂ 具有更高的氧吸附量,说明 MnO_x@TiO₂ 在催化硫代硫酸钠的氧化过程中形 成了更多的氧缺陷更容易吸附氧气,所以反应后催化剂仍能保持较高的催化活性。

催化剂表面酸性通过 NH₃-TPD 的检测进行分析。由图 8(b) 可见,载体本身并没有出现明显的 NH₃ 脱附峰,说明载体表面本身酸性位点量非常少。使用前的 MnO_x@TiO₂ 在 100~250 ℃ 和 250~500 ℃ 有明显的 NH₃ 脱附峰。100~250 ℃ 的低温 NH₃ 脱附峰 属于弱酸性位点的 NH₃ 脱附峰, 250~500 ℃ 的高温 NH₃ 脱附峰则属于中强和强酸性位点的 NH₃ 脱附峰^[14,17]。新鲜制备的催化剂出现较强的 NH₃ 低温脱附峰,说明在负载 MnO_x 后催化剂表面主要形 成弱酸性位点,而这些酸性位点主要以 Brønsted 酸的形式存在^[20]。使用后的催化剂出现了更强的 低温 NH₃ 脱附峰,并且出现了多个较强的高温 NH₃ 脱附峰,说明 MnO_x@TiO₂ 在使用后酸性位点增 加,结合 O₂-TPD 的结果,使用后 MnO_x@TiO₂ 表面酸性位点的增加可能与反应过程中 MnO_x@TiO₂ 表面形成的氧缺陷有关^[21]。

5) H₂-TPR 分析。图 9 为 TiO₂ 和 MnO_x@TiO₂ 使用前后在 150~750 ℃ 的 H₂-TPR 图谱。TiO₂ 没有 耗氢峰,说明 TiO,在这个范围内没有被 H,还原。使用前后 MnO_x@TiO,在 489~505 ℃ 出现的低温 还原峰可归属为表面 Mn⁴⁺氧化物还原为 Mn³⁺氧 化物的还原^[22],结合 XPS 结果可见, MnO_x@TiO₂ 在使用前后 Mn⁴⁺氧化物含量较少且保持不变。 564~591 ℃ 内出现的还原峰可归属于 Mn³⁺氧化 物到 Mn²⁺氧化物的的还原,此还原峰的显著降 低可以再一次证明 Mn³⁺氧化物在 MnO_x@TiO₂ 催化氧化硫代硫酸钠过程中起到了重要的作 用,上述结果同 XPS 结果一致。而 600 ℃ 以上 高温区出现的 2 个峰则可归属为表面氧及晶格 氧的还原^[23],使用后的 MnO_x@TiO₂ 在此范围 内只出现非常微弱的还原峰信号,说明表面活

Fig. 9 H_2 -TPR-Profiles of TiO₂ and MnO_x@TiO₂ before and after the reaction

性氧及晶格氧在反应过程中的脱落,这与 O_2 -/NH₃-TPD的结果相符。

6) BET 表征。BET 测试结果表明, TiO₂ 比表面积只有 8 m²·g⁻¹, 通过浸渍-烘干-煅烧后 MnO_x@TiO₂ 比表面积较载体增大至 55 m²·g⁻¹, 通过负载煅烧 Mn 盐和 TiO₂ 载体相互作用改变了材料的孔结构, 比表面积增加。MnO_x@TiO₂ 在每次反应过后都进行清洗干燥,在共计使用 300 h 后比表面积较使用 前没有变化,表明 MnO_x@TiO₂ 在使用后结构稳定。

2.4 反应机理

结合 2.2 中的分析和催化表征结果可知,常压催化湿式空气氧化硫代硫酸钠中起主要催化作用 的是多相催化湿式空气氧化,对硫代硫酸钠转化的贡献比重占 94.79%,可能的反应机制如图 10 所

示。催化剂活性位点为 Mn²⁺/Mn³⁺催化循环和 催化剂表面氧缺陷。一方面,催化剂中的 Mn³⁺ 作为氧化位点在反应中被还原生成 Mn²⁺,而 后 Mn²⁺会被氧气氧化回 Mn³⁺状态,从而实现催 化循环;另一方面,MnO_x@TiO₂中的氧缺陷更 容易吸附氧气形成活性氧物种或晶格氧,实现 硫代硫酸钠的氧化。

吸附氧气形成活性氧物种或晶格氧,实现 硫酸钠的氧化。 为进一步验证此反应机理,使用 Mn₂O₃ 与 catalytic oxidat 硫酸钠直接进行氧化反应。在最佳反应条件 (反应温度 75 ℃

硫代硫酸钠直接进行氧化反应。在最佳反应条件(反应温度 75 ℃、反应时间 25 h、空气气量 50 mL·min⁻¹)下,加入与 MnO_x@TiO₂等物质量的 Mn 的 Mn₂O₃,硫代硫酸钠转化率为 35%,说明 Mn₂O₃ 作为活性物种参与了硫代硫酸钠的氧化过程。最佳反应条件下使用 MnO_x@TiO₂ 的硫代硫酸 钠转化率为 96%,较使用 Mn₂O₃ 的硫代硫酸钠转化率高出 61%,此结果可以说明,MnO_x@TiO₂ 催 化氧化硫代硫酸钠是 Mn²⁺/Mn³⁺氧化位点的催化循环以及催化剂表面形成的氧缺陷的共同作用。

3 结论

1) 在常压系统下,通过浸渍-煅烧制备的 MnO_x@TiO₂ 对硫代硫酸钠氧化有较好的催化效果, 其催化活性受反应温度的影响,较低的温度不利于氧化反应的进行,而较高的温度不利于常压下 氧气在水中的溶解,最佳反应温度为 75 ℃。

2) 硫代硫酸钠的转化率随反应时间的延长而提高,反应 25 h 转化率可达到 90% 以上;继续延 长反应时间可以提升硫代硫酸钠的转化率,但不利于硫代硫酸钠的深度氧化。

3) 当硫代硫酸钠模拟废水中S₂O₃²⁻质量浓度为 10 000 mg·L⁻¹ 时,最佳反应条件为反应温度 75 ℃、反应时间 25 h、空气气量 50 mL·min⁻¹;硫代硫酸钠转化率在最佳条件下为 96%, 92.5% 的低价态硫

都被氧化为最高价态的硫酸根。

4) MnO_x@TiO₂的主要活性成分为 Mn₂O₃,反应过程中,在 MnO_x@TiO₂表面主要发生由 Mn₂O₃到 MnO 的转化。同时,MnO_x@TiO₂表面形成的氧缺陷为 O₂与S₂O₃²⁻之间的电子转移提供了 更多位点,从而可提高 MnO_x@TiO₂对硫代硫酸钠的催化氧化效率。

参考文献

- [1] 赵兴龙, 刘丽军, 张克利. 湿式氧化处理含硫废碱液的技术进展[J]. 石 油化工安全环保技术, 2008, 24(1): 57-60.
- [2] 高英.处理废碱液中硫化物和有机物的方法研究[J].化学工程师, 2001(6): 79-50.
- [3] 何志祥, 宋远清, 戴友芝. 湿式空气氧化法处理废碱液运行调试[J]. 石 油化工环境保护, 2004, 27(2): 48-51.
- [4] 王婷婷. 硫化钠废碱液催化氧化研究[D]. 北京: 北京化工大学, 2011.
- [5] FU F L, XIONG Y, XIE B P, et al. Adsorption of acid red 73 on copper dithiocarbamate precipitate-type solid wastes[J]. Chemosphere, 2007, 66(1): 1-7.
- [6] 刘崇华,周皓,刘晓群等.催化氧化法处理含硫废碱液新技术的开发与应用[J].油气田环境保护,2006,16(3):14-17.
- [7] 马艺璇,马冬晨,蒋齐光.湿式催化氧化处理塔河油田脱硫废碱液实 验研究[J].仪器仪表与分析检测,2015(4):42-45.
- [8] 何长明,李俊,刘晓晶.催化氧化法处理废碱液中硫化物的工程应用研究[J].应用化工,2018,47(1):123-125.
- [9] BAI B, LI J, HAO J. 1D-MnO₂, 2D-MnO₂ and 3D-MnO₂ for lowtemperature oxidation of ethanol[J]. Applied Catalysis B:Environmental, 2015, 164: 241-250.
- [10] TANG X F, CHEN J L, HUANG X M, et al. Pt/MnO₂-CeO₂ catalysts for the complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B:Environmental, 2008, 81(1/2): 115-121.
- [11] ZHAO B G, RUI R, GUO X G, et al. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH₃ at low temperature[J]. Applied Catalysis B:Environmental, 2017, 545: 64-71.
- [12] SUN C Z, LIU H, CHEN W, et al. Insights into the Sn/Zr co-doping effects on N₂ selectivity and SO₂ resistance of a MnO₃-TiO₂ catalyst for the NH₃-SCR reaction[J]. Chemical Engineering Journal, 2018, 347: 27-40.
- [13] 马兵兵,苏中华,弥海鹏,等.间接碘量法测定氧化铝生产流程样品铝酸钠溶液中硫离子、硫代硫酸钠和亚硫酸根[J]. 冶金分析, 2016, 36(11): 41-45.
- [14] KWON D W, NAM K B, HONG S C. Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of

NO with NH₃ at low temperatures[J]. Applied Catalysis A:General, 2015, 497: 160-166.

- [15] CHEN H H, ZHANG H P, YAN Y. Fabrication of porous copper/manganese binary oxides modified ZSM-5 membrane catalyst and potential application in the removal of VOCs[J]. Chemical Engineering Journal, 2014, 254: 133-142.
- [16] WANG X M, LI X Y, ZHAO Q D, et al. Improved activity of Wmodified MnO₂-TiO₂ catalysts for the selective catalytic reduction of NO with NH₃[J]. Chemical Engineering Journal, 2016, 288: 216-222.
- [17] DUPIN J C, GONBEAU D, VINATIER P, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides[J]. Physical Chemistry Chemical Physics, 2000, 2(6): 1319-1324.
- [18] LIU S X, CHEN X Y. A visible light response TiO₂ photocatalyst realized by cationic S-doping and its application for phenol degradation[J]. Journal of Hazardous Materials, 2008, 152: 48-55.
- [19] PUTLURU S S R, SCHILL L, JENSEN A D, et al. Mn/TiO₂ and Mn-Fe/TiO₂ catalysts synthesized by deposition precipitation-promising for selective catalytic reduction of NO with NH₃ at low temperature[J]. Applied Catalysis B:Environmental, 2015, 165: 628-635.
- [20] GUO R T, WANG Q S, PAN W G, et al. The poisoning effect of heavy metals doping on Mn/TiO₂ catalyst for selective catalytic reduction of NO with NH₃[J]. Journal of Molecular Catalysis A:Chemical, 2015, 407: 1-7.
- [21] SUN P, HUANG S X, GUO R T, et al. The enhanced SCR performance and SO₂ resistance of MnO_x/TiO₂ catalyst by the modification with Nb: A mechanistic study[J]. Applied Surface Science, 2018, 447: 479-488.
- [22] CHEN Q L, GUO R T, WANG Q S, et al. The catalytic performance of Mn/TiWO_x catalyst for selective catalytic reduction of NO_x with NH₃[J]. Fuel, 2016, 181: 852-858.
- [23] QU R Y, PENG Y, SUN X X, et al. Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH₃ over cerium-niobium oxide catalysts[J]. Catalysis Science & Technology, 2016, 6: 2136-2142.

(责任编辑:曲娜)

Catalytic wet air oxidation of sodium thiosulfate under atmospheric pressure with $MnO_x@TiO_2$

PIAO Weiling, YU Danyang, SUN Chenglin, SUN Wenjing*

Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China *Corresponding author, E-mail: sunwenjing@dicp.ac.cn

This work reported the effects of the airflow, the temperature, the reaction time on sodium Abstract thiosulfate conversion. In this process, MnO₂@TiO₂ catalyst was prepared for the catalytic wet air oxidation of sodium thiosulfate in high concentration under atmospheric pressure. X-ray fluorescence (XRF), X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), temperature-programmed desorption (TPD) with NH_3 and O_2 , temperature-programmed reduction with H_2 (H_2 -TPR) and BET were used to characterize the physicochemical properties of MnO_x@TiO₂ catalysts before and after the reactions. The results showed that airflow had an insignificant effect on sodium thiosulfate oxidation under the absolute excess of oxygen. Reaction time and reaction temperature were two important influence factors of the catalytic activities. Reaction time increasing showed a positive influence on the conversion of sodium thiosulfate. The catalytic activities first increased then decreased with the increase of temperature from 65 °C to 85 °C. The optimal experimental conditions were airflow of 50 mL·min⁻¹, the reaction time of 25 h, and reaction temperature of 75 °C, respectively. Under the optimal experimental conditions, the conversion of sodium thiosulfate reached 96% by MnO_x@TiO₂ with Mn loading amount of 2% when the $S_2O_3^{2-}$ concentration was 10 000 mg·L⁻¹. The result of MnO_x@TiO₂ characterization showed that there existed various forms of Mn oxides on the surface of the catalyst, of which Mn₂O₃ was the main active component. The sodium thiosulfate oxidation process was accompanied by the valence conversion of Mn³⁺ to Mn²⁺ and electron transfer. At the same time, various Mn oxides on MnO_x@TiO₂ surface provided more active sites for electron exchange between S₂O₃²⁻ and O₂, which led to an increase of oxygen defects on the catalyst surface. All these results proved the feasibility of the catalytic wet air oxidation of thiosulfate at atmospheric pressure with MnO₂@TiO₂ as the catalyst. This process provided a possibility for improving productivity and economic efficiency of pre-treatment technology for the industrial sulfur-containing spent caustic solution.

Keywords $MnO_x@TiO_2$; sodium thiosulfate; atmospheric pressure; catalytic wet air oxidation

