

Environmental Engineering

第 14卷第 4期 2020年 4月 Vol. 14, No.4 Apr. 2020

http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

me (010) 62941074

🏭 文章栏目:环境生物技术

DOI 10.12030/j.cjee.201907008

中图分类号 X592 文献标识码

潘兰佳, 李杰, 李春星, 等. 嗜热栖热菌降解氟喹诺酮类抗生素[J]. 环境工程学报, 2020, 14(4): 1092-1102. PAN Lanjia, LI Jie, LI Chunxing, et al. Biodegradation of fluoroquinolones by *Thermus thermophilus*[J]. Chinese Journal of Environmental Engineering, 2020, 14(4): 1092-1102.

嗜热栖热菌降解氟喹诺酮类抗生素

潘兰佳,李杰,李春星,汪印*

中国科学院城市环境研究所,中国科学院城市污染物转化重点实验室,厦门 361021

第一作者:潘兰佳(1991—),女,博士,在站博士后。研究方向:废弃物资源化及污染物控制。E-mail: ljpan@iue.ac.cn *通信作者:汪印(1969—),男,博士,研究员。研究方向:固体废物处置与资源化。E-mail: yinwang@iue.ac.cn

摘 要 氟喹诺酮类抗生素在各种环境基质中积累造成的生态和耐药基因污染等问题已引起广泛的关注。为了 能够有效去除环境中氟喹诺酮类抗生素污染并且探究其生物代谢途径,利用嗜热菌 *Thermus* sp. C419 在高温 (70℃)条件下降解2种典型的氟喹诺酮类抗生素(诺氟沙星和恩诺沙星),分析了菌株 C419 对这2种药物在单一 和混合添加时的降解特性;通过 UPLC-MS/MS 检测了其相关的降解产物,并推测了可能的代谢途径;利用平板 扩散法对生物降解后的氟喹诺酮类药物进行抑菌活性测定。结果表明:氟喹诺酮类化合物可被菌株 C419 有效 降解,降解率为 60%~80%;该生物降解过程符合一级动力学模型,培养基中氟喹诺酮类化合物浓度越高,降解 率越高,降解半衰期越短;菌株 C419 对诺氟沙星的生物降解有3条可能的降解途径和7种降解产物,对恩诺沙 星的生物降解有4条可能的降解途径和6种降解产物。此外,与2种药物的母体化合物相比,生物降解后药物 对不同细菌的抗菌活性均有一定程度的降低,这说明嗜热菌株 C419 在热环境中去除氟喹诺酮类污染物方面可 能会具有良好的实用性和应用前景。

关键词 抗生素降解;氟喹诺酮;嗜热微生物;代谢产物;生物降解途径;抗菌活性

氟喹诺酮类药物因其广谱性和疗效好而被广泛应用于兽医临床治疗,目前使用最多的是第 3代产品,包括氧氟沙星,诺氟沙星(NOR)、恩诺沙星(ENR)和环丙沙星等。进入动物体内的药物 不能被完全吸收,50%以上会随动物粪尿排出体外,最终导致大量氟喹诺酮类化合物进入环境 中。有研究^[13]表明,此类药物可以在许多环境基质中检出,甚至在一些居民生活供水中也有少量 存在。在对广州多处饮用水进行药物检测分析时发现,氟喹诺酮药物的浓度为1.0~679.7 ng·L⁻¹^[4]; FICK等^[5]从多个饮用水井取样检测,结果显示其中某些氟喹诺酮类药物浓度高达 1 µg·L⁻¹。不同环 境基质中的氟喹诺酮类药物可能会影响环境过程、破坏生态系统服务并导致氟喹诺酮类耐药基因 的产生和传播^[6],最终会对人类健康造成威胁。为使畜禽粪便在作为肥料资源利用之前能够尽可能 地去除其中残留的抗生素药物,通常利用高温堆肥工艺对其进行处理,但氟喹诺酮类药物因喹诺 酮环的存在而表现出较高的稳定性,特别是耐水解和耐高温等性质,普通的堆肥很难实现该类药 物的完全去除。而且,氟喹诺酮类化合物作为抗菌药物,还可抵抗微生物的降解转化^[7]。据报道^[8], 氟喹诺酮类药物在高温堆肥中具有较强的抗逆性,因此,其在堆肥产品中的大量残留已成为一个

收稿日期: 2019-07-03; 录用日期: 2019-09-05

基金项目:美丽中国生态文明建设科技工程专项 (XDA23030301; XDA23020500);中日政府间国际科技创新合作重点项目 (2016YFE0118000)

急待解决的问题。

近年来,研究者探索了电化学氧化^[9]、高级氧化^[10]、光降解^[11]、材料吸附^[12]和生物降解法^[13] 等多种方法以去除环境中的抗生素污染。生物降解法作为一种环境友好且有效的抗生素去除方法 受到了广泛的关注,而微生物在环境污染物的生物降解中起着重要的作用。有研究^[14]发现,堆肥 中氟喹诺酮类药物的完全去除可通过接种微生物来实现。目前,已发现多种微生物具有降解氟喹 诺酮类药物的能力,如微杆菌属的细菌可降解 NOR,白腐真菌 (*Irpex lacteus, Panus tigrinus, Dichomitus squalens* 等) 能降解转化 NOR、氧氟沙星和环丙沙星^[15-18]。另外,为了确定该类药物的生 物降解模式,一些研究^[19-20]分析了典型的氟喹诺酮类药物生物降解后的产物。据报道^[21],ENR 可 以通过木腐真菌转化为 CO₂和其他一些代谢物;环丙沙星也可被木腐菌通过羟基化、脱羧、脱氟 和哌嗪环降解等途径转化。然而以上关于微生物降解转化氟喹诺酮类药物性能和降解机制的实验 均是在常温 (25~30 ℃) 的条件下进行,在与堆肥温度相近的热环境中 (70 ℃) 的相关研究报道较少。

本研究以前期从药厂污泥筛选得到的嗜热菌 *Thermus* sp. C419(CGMCC 1 16184, GenBank 登录号: KY784655C419)^[22]为降解菌株,探究其在 70 ℃ 的高温条件下对常用的 2 种氟喹诺酮类药物 (NOR 和 ENR) 单独和混合存在时的生物降解情况,并对药物的降解动力学、生物降解产物和可能的代谢 途径进行研究分析,最后通过鉴定生物降解后药物的残留抗菌活性,分析其对微生物的毒性大小。本研究探索了氟喹诺酮类药物在高温条件下的降解转化,以期为畜禽粪便高温堆肥工艺提供 可降解氟喹诺酮类药物的堆肥菌剂,实现堆肥过程畜禽粪便中氟喹诺酮类药物的高效降解。

1 材料与方法

1.1 药品与培养基

本实验过程中所用的 NOR 和 ENR 购于上海阿拉丁生化科技股份有限公司。实验采用无机盐 培养基 (MMSM) 进行生物降解实验,主要成分包括 FeSO₄·7H₂O 0.013 g·L⁻¹、CaCl₂·2H₂O 0.013 g·L⁻¹、 Na₂EDTA·2H₂O 0.018 g·L⁻¹、 MgSO₄·7H₂O 0.25 g·L⁻¹、KH₂PO₄ 5 g·L⁻¹、NH₄NO₃ 5 g·L⁻¹、 Na₂HPO₄ 7.5 g·L⁻¹、酵母提取物 0.6 g·L⁻¹、乙酸钠 0.5 g·L⁻¹、NOR/ENR 5 mg·L⁻¹ 或 10 mg·L⁻¹。采用 Luria-Bertani (LB) 培养基 (胰蛋白胨 10 g·L⁻¹、NaCl 5 g·L⁻¹、酵母提取物 5 g·L⁻¹) 进行细菌细胞的增殖培养。

1.2 实验方法

1) 生物降解实验。250 mL 的锥形瓶中添加 100 mL 的 MMSM 培养基 (乙酸钠浓度 0.5 g·L⁻¹),接种 3% 的菌株 C419 菌悬液,并根据畜禽粪便中抗生素的典型浓度 (1~10 mg·kg⁻¹)^[23],设定降解单一药物实验中的低剂量组 NOR/ENR 药物浓度为 5 mg·L⁻¹,高剂量组 NOR/ENR 药物浓度为 10 mg·L⁻¹; 2 种药物混合降解实验体系中,NOR/ENR 药物浓度各为 5 mg·L⁻¹。培养液置于 70 ℃、转速为 150 r·min⁻¹ 的摇床避光培养,在 0、12、24、48、72、120、168 和 216 h 取样测定药物残留浓度以及菌体生长量。实验中通过称重法确定培养期间蒸发水的量,并在取样前添加无菌水至原重量。取样后,样品利用 0.45 μm 针式滤膜过滤,所获液体保存在棕色色谱瓶中并存放在 4 ℃ 的冰箱中待测。

利用一级动力学模型拟合菌株 C419 对氟喹诺酮类生物降解动力学, 计算方法见式 (1)。

$$C = C_0 \mathrm{e}^{-kt} \tag{1}$$

式中: C_0 为初始浓度, mg·L⁻¹; C 为实验时间 t 时的药物浓度, mg·L⁻¹; k 为降解速率常数, h⁻¹。 生物降解的半衰期 $t_{1/2}$ 的计算方法如式 (2) 所示。

 $t_{1/2}$

$$=\ln 2/k$$

(2)

2)生物降解代谢物的提取。取氟喹诺酮药物生物降解后的上清液进行离心(8 000 r·min⁻¹),并用针式滤膜(0.22 μm)过滤。用与样品等量的乙酸乙酯提取样品中的降解产物,提取步骤重复3次。收集乙酸乙酯,用氮吹仪将其吹干,最后用甲醇溶解提取物,所获液体保存在棕色色谱瓶中

并存放在4℃的冰箱中待测。

3) 残留抗菌活性测定。通过改进的平板扩散药敏实验,利用枯草芽孢杆菌 (Bacillus subtilis,革 兰氏阴性)和大肠杆菌 K12 (Escherichia coli,革兰氏阴性)对氟喹诺酮类药物及其代谢物的残留抗菌 活性进行检测^[18]。主要实验步骤:将1mL的菌悬液 (OD₆₀₀ = 1.0) 接种到 LB 半固体培养基 (琼脂含 量 0.8%) 中混合均匀,并分装至培养皿中。待培养基凝固后,在培养基上放置 4 个直径为 6 mm 的 牛津杯,并在杯子中加入样品和氟喹诺酮类药物 (5 mg·L⁻¹)各 200 μL。将培养皿置于在 37 ℃ 培养 箱中,20 h之后取出测定抑菌圈的大小。通过对比原始药物的抑菌圈与降解后样品抑菌圈的大小 得到相对的抑制率,以此来评估实验样品残留的抗菌活性。

1.3 分析方法

利用高效液相色谱 (Hitachi L-2000, 日本) 测定各氟喹诺酮类抗生素的浓度。检测条件如下:流动相为 0.02 mol·L⁻¹ 的三氯乙酸、乙腈和甲醇 (74:22:4,体积比),利用安捷伦 C-18 色谱柱 (250 mm× 4.6 mm, 5 µm) 进行色谱分离,柱温设定为 30 ℃,激发波长设定为 278 nm,进样量为 10 µL。

利用超高效液相色谱串联质谱 (UPLC-MS/MS, AB Sciex 6500,美国) 对氟喹诺酮类抗生素的微 生物降解代谢产物进行分析。色谱柱为岛津 C18 色谱柱 (20 mm×75 mm, 1.6 µm, 日本), 色谱分离 温度为 30 ℃。流动相由 0.1% 甲酸水溶液 (A) 和 0.1% 甲酸乙腈溶液 (B) 组成。流速为 0.3 mL·min⁻¹, 样品注入量为 10 µL。洗脱程序为: B 相在 20 min 内完成 10%~100% 的梯度洗脱, 随后以 10% 的 B 相等度洗脱 5 min。该质谱仪配备了一个电喷雾接口 (ESI), ESI 源设定为正离子模式,温度为 350 ℃,电压设置为 4.5 kV。检测器于质荷比为 50~700 时对样晶进行全面扫描,获得代谢物。检测 结束后,利用分析软件 Analyst 1.6.3 对结果进行分析。根据查阅的文献和 EAWAG-BBD 代谢通路预 测系统 (http://eawag-bbd.ethz.ch/UNK t/) 的预测路径确定降解产物,并在 Low-MS 条件下对产物进行 鉴定,进一步证实了降解产物的结构。

2 结果与讨论

2.1 NOR 和 ENR 的生物降解

菌株 C419 对单一药物 NOR 的降解情况如图 1 所示。低剂量 (5 mg·L⁻¹)处理组中,菌株 C419 在初始 24 h 的生长速度快于高剂量 (10 mg·L⁻¹)处理组,但 2 组的最大生长量无明显差异。高、低剂量处理组在 72 h 内,对 NOR 的降解率分别为 66% 和 60%;72 h 后,NOR 浓度基本不再降低。出现以上现象的主要原因可能是,在 72 h后,菌体的生物量开始下降,菌体不再生长或者繁殖速率低于菌体的死亡速率,进而说明 NOR 降解主要发生在菌体生物量增长阶段。图 2 反映了菌株 C419

降解单一药物 ENR 的结果。低剂量 (5 mg·L⁻¹) 处理组中, ENR 的生物降解在初始 48 h 逐渐增 加,与细菌的生长趋势一致;高剂量 (10 mg·L⁻¹) 处理组也出现类似的现象。随着降解时间继续 延长,虽然菌体生长量开始下降,但是 ENR 的降解还在继续,120 h 后低剂量组达到最高 降解率 (75%),168 h 后高浓度处理组达到最高 降解率 (80%)。由以上结果可知,ENR 的降解 不局限于菌体生物量的增长阶段,高浓度 ENR 的降解需要更长时间,且最终的降解率更高; 同时,结果也表明菌株 C419 在氟喹诺酮药物 高剂量处理组中表现出更强的降解能力。

我留浓度和菌体生长量

Fig. 1 Residual concentration of norfloxacin and bacterial growth in 5 mg \cdot L⁻¹ and 10 mg \cdot L⁻¹ system

对比 NOR 与 ENR 的降解,菌株 C419 对 单一药物 NOR 或 ENR(5 mg·L⁻¹)的降解率分别 为 60% 和 75%,这说明菌株 C419 对 ENR 的降 解效率更高,但是需要的时间更长。对比该菌 株降解环丙沙星的效率 (57%)^[22],本研究中菌 株 C419 对 NOR 与 ENR 的降解效率更高,这主 要是因为不同类型氟喹诺酮类药物降解效果与 药物分子结构的差异及其对微生物的毒性有关^[23]。 在 3 种氟喹诺酮药物 (NOR、ENR、环丙沙星) 中,环丙沙星对菌株 C419 的降解活性的抑制 毒性最强,NOR 次之,ENR 最弱。该结果与 AMORIM 等^[17]的研究结果一致。

在环境基质中, 氟喹诺酮类化合物通常是

Fig. 2 Residual concentration of enrofloxacin and bacterial growth in 5 mg \cdot L⁻¹ and 10 mg \cdot L⁻¹ system

同时存在的,因此,评价菌株对混合药物的生物降解能力具有重要意义。图 3 反映了在 2 种氟喹 诺酮类药物 (NOR 和 ENR) 混合体系中,菌株 C419 对他们的降解以及菌体生长的情况。在混合降 解体系中,65% 以上的 NOR 在培养48 h 后被去除; ENR 降解率则在培养120 h 后达到最大值 77%。与单一抗生素降解结果 (5 mg·L⁻¹ NOR: 72 h 降解 60%; 5 mg·L⁻¹ ENR: 120 h 降解 75%) 相 比,混合降解体系中各抗生素的降解效率更高,降解完成的时间更短。

综合以上结果可知,培养基中氟喹诺酮类药物种类越多或者抗生素浓度越高,菌株对抗生素 的降解效率越高。其原因可能是,本研究中利用的菌株 *Thermus* sp. C419 是一种被证明具有合成淀 粉酶、漆酶、锰过氧化物酶等耐热酶能力的嗜热菌^[24]。根据已有研究^[18,25],这些酶广泛存在于真 菌、细菌和植物中,并已被用于降解各种有机污染物,包括氟喹诺酮类药物,而且酶降解和修饰 是抗生素药物等有机污染物生物降解的重要机制。由此推断,菌株 C419 对氟喹诺酮药物的降解是 酶的作用结果。但是底物浓度过低将无法刺激微生物降解酶的产生,这会导致生物降解受到限制^[26]。 另有研究^[27] 指出,底物浓度的增加可以提高降解酶的活力。因此,高浓度或者种类多样的氟喹诺 酮药物可以促进菌株 C419 合成更高酶活的降解酶,从而提高生物降解效率。另外,氟喹诺酮类药 物的降解速率在菌体生长初期速度较快,这可能是由于乙酸钠作为外加碳源的促进作用导致的。 随着乙酸钠的逐渐消耗,氟喹诺酮类药物的降解随之减弱。有研究^[28]表明,易降解碳源的存在可

以增加菌株生物量,并诱导参与化合物降解的 特定酶的合成。而且,营养物质可以明显改善 微生物生长和关键酶的活性,进一步增强微生 物的共代谢作用^[29]。

2.2 NOR 和 ENR 的生物降解动力学分析

一级动力学模型通常被用于描述抗生素的降解行为^[13,17,30],因此,本研究采用该模型拟合 NOR 和 ENR 的生物降解过程。由表 1 可以看出,各处理组的可决系数(*R*²)为 0.815 6~0.950 4,这说明本实验数据与一级动力学模型 拟合较好。不同浓度的 NOR 和 ENR 的降解速 率常数(*k*)为 0.015 6~0.023 2 h⁻¹; 2 种药物混合体系中的降解速率常数分别为 0.022 8 h⁻¹ 和

图 3 诺氟沙星和恩诺沙星混合降解体系中 2 种药物的 残留浓度以及菌体生长量

0.022 3 h⁻¹; 菌株 C419 在不同实验条件下对于这 2 种氟喹诺酮类药物的降解半衰期为 29.9~44.4 h。 对于单一药物的降解而言,低剂量处理组的 NOR 和 ENR 的半衰期都高于高剂量处理组,面降解速 率常数均小于高剂量处理组,这说明高浓度下 2 种氟喹诺酮类药物的去除速率更快。此外,当菌 株 C419 降解 NOR 和 ENR 混合液时,这 2 种药物的半衰期均低于单一药物降解时的半衰期,同 时,降解速率常数均大于单一药物降解情况。

degradation in different treatments									
处理组	k/h^{-1}	<i>t</i> _{1/2} /h	R^2	拟合方程					
NOR (5 mg \cdot L ⁻¹)	0.015 6	44.4	0.815 6	$\ln C/C_0 = -0.015 \ 6t - 0.104 \ 3$					
NOR (10 mg \cdot L ⁻¹)	0.018 1	38.3	0.935 8	$\ln C/C_0 = -0.018 \ 1t - 0.065 \ 1$					
ENR (5 mg· L^{-1})	0.019 1	36.2	0.911 5	$\ln C/C_0 = -0.019 \ 1t - 0.088 \ 9$					
ENR (10 mg \cdot L ⁻¹)	0.023 2	29.9	0.873 4	$\ln C/C_0 = -0.023 \ 2t - 0.093 \ 9$					
NOR (混合)	0.022 8	30.4	0.950 4	$\ln C/C_0 = -0.022 \ 8t - 0.034 \ 3$					
ENR (混合)	0.022 3	31.1	0.941 3	$\ln C/C_0 = -0.022 \ 3t - 0.081 \ 0$					

表1 不同处理组氟喹诺酮类降解的动力学参数及拟合方程

2.3 生物降解产物的鉴定

利用超高效液相色谱串联质谱 (UPLC-MS/MS) 对 NOR 和 ENR 的微生物降解代谢产物进行分析。相关产物的结构是基于参考文献中的方法^[16-19] 和 EAWAG-BBD 途径预测系统所得出,并通过产物离子分析进一步确认。NOR 和 ENR 产物的质谱数据、相关的化学式和产物分子离子碎片损失结果见表 2和表 3。根据这些结果,提出了降解 NOR 和 ENR 可能的代谢途径 (如图 4 和图 5 所示), 氟喹诺酮类化合物有多条微生物降解途径,这与已有的研究结果^[31]一致。

菌株 C419 降解 NOR 的代谢途径如图 4 所示。NOR 的哌嗪环通过生物降解后由 2 个不同的途 径开环并转化为 2 种不同的化合物 (N1-1 和 N1-2)。产物 N1-1 和 N1-2 可被进一步氧化生成 N2-1 和 N2-2^[16]。在 N2-1 到 N4 的过程中,发生了一系列反应,包括脱羧反应和侧链基团的去除。虽然 N1-1 和 N4 之间存在中间产物,但由于这些化合物的不稳定性,因此,质谱检测并未获得相关信息。从 N2-2 到 N4 和 N5 的反应是通过胺氧化去除一个"R 基团"的方式进行的。产物 N6 是由 N5 的吡啶环去除 C₂H₅ 而获得的。上述代谢途径主要是基于 EAWAG-BBD 途径预测系统提出的,N1、N2、N3、N4 和 N6 这 5 种降解产物首次在本研究中被提出。产物 N1(C₁₆H₁₈FN₃O₄, *m/z* 336) 和 N5(C₁₂H₁₁FN₂O₃, *m/z* 251) 曾在白腐真菌降解 NOR 的实验中^[16] 被检测出。另外,在菌株 Labrys portucalensis F11 降解 NOR 生成的中间体中首次发现产物 N7(C₁₄H₁₆FN₃O₂, *m/z* 278) 和 N8(C₁₆H₁₉N₃O₄, *m/z* 318)。产物 N9(C₁₇H₁₈FN₅O₄, *m/z* 348) 降解木质素真菌的研究^[18]表明其为代谢产物之一。

菌株 C419 降解 ENR 的代谢途径如图 5 所示。首先产物 E1 是通过氧化去除吡啶环上的环丙基 而得到的,然后将 E1 的哌嗪环氧化开环生成产物 E4 和 E5。E5 有 2 种可能的结构,包括 E5-1 和 E5-2。ENR 也可能被氧化成 E2,并通过氧化去除胺的"R 基团"的方式进一步转化为 E3。氟喹诺酮 类化合物的转化都有相同的趋势,即哌嗪取代基始终是酶的作用位点^[17]。产物 E6(C₁₉H₂₃FN₃O₄, *m/z* 358)和 E7(C₁₉H₂₃N₃O₅, *m/z* 374)也为褐腐菌降解 ENR 的产物^[19]。产物 E6 可能是由羟基自由基对初始 的 ENR 分子上氟位点的攻击所产生的,产物 E7 是 E6 进一步羟基化所生成的。由于 ENR 的代谢反 应复杂,只有稳定的中间体才能被分离和鉴定出。

化合物	$[M+H]^+$	离子碎片质荷比	化学式	碎片损失
NOR		302		H ₂ O
	320	276	C ₁₆ H ₁₈ FN ₃ O ₃	\overline{CO}_2
		205		CO_2 , C_2H_4N , C_2H_5
N1-1/N1-2	336	318		H ₂ O
		288	$C_{16}H_{18}FN_3O_4$	F, C_2H_5
		245		H ₂ O, CO ₂ , C ₂ H ₅
N2-1/N2-2		322	$C_{16}H_{17}FN_{3}O_{5}$	C ₂ H ₅
	351	284		H ₂ O, F, C ₂ H ₅
		245		H_2O , CO_2 , C_2H_5
		304	C ₁₄ H ₁₀ FN ₂ O ₆	H ₂ O
N3	322	258		F, COOH
		231		H_2O , CO_2 , C_2H_5
N4	266	248	C ₁₂ H ₁₂ FN ₃ O ₃	H ₂ O
		221		СООН
N5	251	233	$C_{12}H_{11}FN_2O_3$	H ₂ O
		205		H_2O, C_2H_4
		149		H ₂ O, C ₂ H ₄ , 2个CO
N6	· · ·	207		NH ₂
	223	194	$C_{10}H_7FN_2O_3$	НСО
		178	\land	СООН
N7		250	C ₁₄ H ₁₆ FN ₃ O ₂	СО
	278	232		H ₂ O, CO
		207		HCO, C_2H_4N
N8	318	300	CHNO	H ₂ O
		256	C ₁₆ ¹¹ ₁₉ ¹ V ₃ O ₄	H_2O, CO_2
N9	348	330	C ₁₇ H ₁₈ FN ₃ O ₄	H ₂ O
		274		COOH, C_2H_5

 Table 2
 Mass spectral data and calculated formula of norfloxacin and its biodegradation metabolites

表 3 恩诺沙星及其生物降解代谢产物的质谱数据及化学式

	Table 3	3 Mass spectral data and calculated formula of enrofloxacin and its biodegradation n						
-	化合物 [M+H] ⁺		离子碎片质荷比	化学式	碎片损失			
-			342		H_2O			
E	ENR	360	316	C19H22FN3O3	CO_2			
			245		COOH, C_2H_4 , C_3H_6			
-	El	220	302	C IL EN O	H ₂ O			
E5-	EI	320	258	$C_{16}H_{18}FN_{3}O_{3}$	OH, COOH			
			374		H ₂ O			
	E2	392	321	$C_{19}H_{22}FN_3O_5$	$C_{3}H_{6}, C_{2}H_{5}$			
			261		CH ₂ COOH, C ₄ H ₁₀ N			
			287		H ₂ O			
	E3	305	276	$\mathrm{C_{15}H_{13}FN_2O_4}$	НСО			
			261		CO_2			
	E4	224	306	$\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{FN}_{3}\mathrm{O}_{5}$	H_2O			
	E4	524	219		C ₂ H ₆ N, COOH, NH ₂			
			290		H ₂ O			
	E5-1/E5-2	308	262	$\mathrm{C_{14}H_{14}FN_{3}O_{4}}$	H_2O , CO			
	\sim		193		COOH, C ₃ H ₄ NO			
			340		H ₂ O			
	E6	358	269	$C_{19}H_{23}FN_{3}O_{4}$	H_2O, C_3H_6, C_2H_5			
			243		COOH, C_2H_4 , C_3H_6			
	E7	274	356	$C_{19}H_{23}N_3O_5$	H_2O			
	E/	574	312		H ₂ O, CO ₂			

2.4 残留抗菌活性分析

本研究利用革兰氏阴性菌-大肠杆菌 K12 和革兰氏阳性菌-枯草芽孢杆菌作为检测降解后药物的残留抗菌活性的目标微生物,通过比较氟喹诺酮类原药和生物降解后样品的抑菌圈大小得出样品对微生物的相对抑制率,来评估降解产物的残留抗菌活性。图6展示了生物降解后氟喹诺酮药物的残留浓度以及对枯草芽孢杆菌和大肠杆菌 K12 的相对抑制作用,结果表明,与母体化合物抑菌活性(100%)相比,2种氟喹诺酮类药物通过生物降解之后,其抑菌活性均有一定程度的降低。实验发现,NOR 溶液和生物降解后的 NOR 样品对枯草芽孢杆菌均无抑制作用,因此,图6中没有显示相应结果。生物降解后的 NOR 样品对大肠杆菌 K12 的抑制作用与原始的 NOR 溶液相比降低

了 30% 左右。而经生物降解后的 ENR 对大肠 杆菌 K12 的抑制活性仍较高,与母体化合物相 比仅降低 20%,对枯草芽孢杆菌的抑制降低了 45%。

由以上实验结果可知,生物降解之后的喹 诺酮类药物仍然具有一定的抗菌活性。氟喹诺 酮类药物的降解不彻底是其抗菌活性高的原因 之一。氟喹诺酮类药物的抑菌活性主要在于哌 嗪环和氟取代基^[15]。虽然哌嗪环通常是降解酶 的作用点,但本研究中其代谢产物结构复杂, 一些活性基团未被完全清除,因此,其抗菌活 性并未完全消失。同时,培养基中未被生物降 解的母体化合物同样会造成较高的抗菌活性。 ČVANČAROVA等^[18]利用从环境中获得的多种 微生物检测降解之后的氟喹诺酮药物的毒性,

发现所有被测微生物均被高度抑制,这表明代谢产物仍然具有很高的抗菌活性。BECKER等^[32]利用真菌漆酶去除废水中的抗生素 (包括 10 种氟喹诺酮类抗生素),发现抗生素的毒性仅略有下降。因此,生物降解并不能完全去除氟喹诺酮类药物的毒性,一些物理化学降解方法也是如此^[33]。由此推断,如果氟喹诺酮类未被彻底矿化,复杂的降解产物的残留抗菌活性仍不可低估。

3 结论

1) 菌株 C419 具有降解 NOR 和 ENR 的能力。C419 单独降解 NOR 时,在高剂量和低剂量处理 组中,NOR 的去除率分别为 66% 和 60%; C419 单独降解 ENR 时,在高剂量和低剂量处理组中, ENR 的去除率分别为 80% 和 75%。

2) 菌株 C419 降解 NOR 和 ENR 混合物时,对 2 种药物的去除率分别为 65% 和 77%,均比降解 单一药物时的去除率高。

3)NOR 和 ENR 的生物降解遵循一级动力学模型。通过模型解析可以发现,培养基中氟喹诺酮 类药物浓度越高或者混合降解时,药物的半衰期越短,降解效率越高。

4) 利用 UPLC-MS/MS 确定了 NOR 和 ENR 可能的生物降解产物,并根据文献和代谢途径预测 系统提出 2 种药物可能的代谢途径。另外,生物降解后的氟喹诺酮类药物抗菌活性减弱,但并未 完全消失。因此,须进一步减少代谢产物的活性,以实现该菌株的工程应用。

参考文献

- [1] MAUL J D, CHULER L J, BELDEN J B, et al. Effects of the antibiotic ciprofloxacin on stream microbial communities and detritivorous macroinvertebrates[J]. Environmental Toxicology and Chemistry, 2006, 25(6): 1598-1606.
- [2] MARTINEZ-CARBALLO E, GONZALEZ-BARREIRO C, SCHARF S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria[J]. Environmental Pollution, 2007, 148(2): 570-579.
- [3] ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5): 1069-1075.
- [4] GUINEA E, GARRIDO J A, RODRIGUEZ R M, et al. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration[J]. Electrochimica Acta, 2010, 55(6): 2101-2115.
- [5] FICK J, SODERSTROM H, LINDBERG R H, et al. Contamination of surface, ground, and drinking water from pharmaceutical production[J]. Environmental Toxicology and Chemistry, 2009, 28(12): 2522-2527.
- [6] FERREIRA V R A, AMORIM C L, CRAVO S M, et al. Fluoroquinolones biosorption onto microbial biomass: Activated sludge and aerobic granular sludge[J]. International Biodeterioration & Biodegradation, 2016, 110: 53-60.
- [7] KUMMERER K. Pharmaceuticals in the environment[J]. Annual Review of Environment and Resources, 2010, 35: 57-75.
- [8] ZHANG H B, LUO Y M, WU L H, et al. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming[J]. Environmental Science and Pollution Research, 2015, 22(8): 5908-5918.
- [9] WANG Q J, MO C H, LI Y W, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7): 2350-2358.
- [10] GUPTA A, GARG A. Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment[J]. Chemosphere, 2018, 193: 1181-1188.
- [11] STURINI M, SPELTINI A, MARASCHI F, et al. Sunlight-induced degradation of fluoroquinolones in wastewater effluent: Photoproducts identification and toxicity[J]. Chemosphere, 2015, 134: 313-318.
- [12] ZHAO H, LIU X, CAO Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic

pharmaceuticals on multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2016, 310: 235-245.

- [13] XIONG J Q, KURADE M B, KIM J R, et al. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Journal of Hazardous Materials, 2017, 323: 212-219.
- [14] 沈东升, 何虹蓁, 汪美贞, 等. 土霉素降解菌TJ-1在猪粪无害化处理中的作用[J]. 环境科学学报, 2013, 33(1): 147-153.
- [15] KIM D W, HEINZE T M, KIM B S, et al. Modification of norfloxacin by a *Microbacterium* sp. strain isolated from a wastewater treatment plant[J]. Applied and Environmental Microbiology, 2011, 77(17): 6100-6108.
- [16] PRIETO A, MODER M, RODIL R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresource Technology, 2011, 102(23): 10987-10995.
- [17] AMORIM C L, MOREIRA I S, MAIA A S, et al. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by *Labrys portucalensis* F11[J]. Applied Microbiology and Biotechnology, 2014, 98(7): 3181-3190.
- [18] ČVANČAROVA M, MOEDER M, FILIPOVA A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi: Metabolites, enzymes and residual antibacterial activity[J]. Chemosphere, 2015, 136: 311-320.
- [19] WETZSTEIN H G, SCHMEER N, KARL W. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites[J]. Applied and Environmental Microbiology, 1997, 63(11): 4272-4281.
- [20] MARTENS R, WETZSTEIN H G, ZADRAZIL F, et al. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi[J]. Applied and Environmental Microbiology, 1996, 62(11): 4206-4209.
- [21] WETZSTEIN H G, STADLER M, TICHY H V, et al. Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus *Gloeophyllum striatum*[J]. Applied and Environmental Microbiology, 1999, 65(4): 1556-1563.
- [22] PAN L J, LI C X, et al. Study of ciprofloxacin biodegradation by a *Thermus* sp. isolated from pharmaceutical sludge[J]. Journal of Hazardous Materials, 2018, 343: 59-67.
- [23] PAN L J, TANG X D, LI C X, et al. Biodegradation of sulfamethazine by an isolated thermophile: *Geobacillus* sp. S-07[J]. World Journal of Microbiology and Biotechnology, 2017, 33(5): 85.
- [24] AKASSOU M, GROLEAU D. Optimization of the production of an extracellular and thermostable amylolytic enzyme by *Thermus thermophilus* HB8 and basic characterization[J]. Extremophiles, 2018, 22(2): 189-202.
- [25] BLANQUEZ A, GUILLEN F, RODRIGUEZ J, et al. The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae[J]. World Journal of Microbiology and Biotechnology, 2016, 32(3): 52.
- [26] KOVAR K. CHALOUPKA V, EGLI T. A threshold substrate concentration is required to initiate the degradation of 3phenylpropionic acid in *Escherichia coli*[J]. Acta Biotechnologica, 2002, 22(3/4): 285-298.
- [27] 孟婧. 木质素促进白腐真菌降解偶氮染料的机制研究[D]. 武汉: 华中科技大学, 2016.
- [28] LOH K C, YU Y G. Kinetics of carbazole degradation by *Pseudomonas putida* in presence of sodium salicylate[J]. Water Research, 2000, 34(17): 4131-4138.
- [29] LUO W, ZHU X C, CHEN W T, et al. Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds-chlorinated ethylenes as the model[J]. Water Science and Technology, 2014, 69(10): 1971-1983.
- [30] RAMASWAMY J, PRASHER S O, PATEL R M, et al. The effect of composting on the degradation of a veterinary

pharmaceutical[J]. Bioresource Technology, 2010, 101(7): 2294-2299.

- [31] FELCZAK A, ZAWADZKA K, LISOWSKA K. Efficient biodegradation of quinolone: Factors determining the process[J]. International Biodeterioration & Biodegradation, 2014, 96: 127-134.
- [32] BECKER D, DELLA GIUSTINA S V, RODRIGUEZ-MOZAZ S, et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase: Degradation of compounds does not always eliminate toxicity[J]. Bioresource Technology, 2016, 219: 500-509.
- [33] WAMMER K H, KORTE A R, LUNDEEN R A, et al. Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin[J]. Water Research, 2013, 47(1): 439-448.
- (本文编辑:曲娜,郑晓梅,张利田)

Biodegradation of fluoroquinolones by Thermus thermophilus

PAN Lanjia, LI Jie, LI Chunxing, WANG Yin*

Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

*Corresponding author, E-mail: yinwang@iue.ac.cn

The problems of environmental matrices pollution and resistance genes generation caused by Abstract fluoroquinolones accumulation seriously affect human health, thus its removal and transformation have attracted broad attention. In order to effectively remove fluoroquinolone antibiotics from environment and explored their bio-metabolic pathway, a thermophilic bacterium (Thermus sp. strain C419) was used to biodegrade two representative fluoroquinolones (norfloxacin and enrofloxacin) at high temperature of 70 °C, the degradation characteristics of these two fluoroquinolone alone and their mixture by C419 were analyzed. The degradation products were detected by UPLC-MS/MS to predict the possible metabolic pathway, the antibacterial activity of the biodegraded fluoroquinolones was test by using disk diffusion susceptibility assays. The results showed that fluoroquinolones could be degraded effectively by strain C419 with a degradation efficiency of 60%-75%, the biodegradation process followed the first order kinetic model. Higher fluoroquinolones concentration resulted in higher degradation efficiency and shorter degradation half-life period. The norfloxacin biodegradation by strain C419 occurred via three pathways and yielded seven biodegradation metabolites, while the enrofloxacin biodegradation occurred via four pathways and yielded six biodegradation metabolites. In addition, the biodegrading-metabolites of norfloxacin and enrofloxacin presented attenuated antibacterial activities. The obtained results indicated that the thermophilic fluoroquinolone-degrading Thermus sp. strain C419 presented useful and meaningful application prospect in removing fluoroquinolone contaminants especially from thermal environments.

Keywords antibiotics degradation; fluoroquinolones; thermophiles; metabolites; biodegradation pathway; antibacterial activity