Würth C, Fischer S, Grauel B, et al. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(14):4922-4928
|
Bloembergen N. Solid state infrared quantum counters[J]. Physical Review Letters, 1959, 2(3):84-85
|
Yao J, Huang C, Liu C H, et al. Upconversion luminescence nanomaterials:A versatile platform for imaging, sensing, and therapy[J]. Talanta, 2020, 208:120157
|
Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 2009, 38(4):976-989
|
Zhu Y M, Xie A G, Li M, et al. Noninvasive photochemical sealing for Achilles tendon rupture by combination of upconversion nanoparticles and photochemical tissue bonding technology[J]. BioMed Research International, 2020, 2020:1753152
|
Xu F, Sun Y, Gao H P, et al. High-performance perovskite solar cells based on NaCsWO3@NaYF4@NaYF4:Yb, Er upconversion nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(2):2674-2684
|
Lei Z D, Ling X, Mei Q S, et al. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles[J]. Advanced Materials, 2020, 32(9):e1906225
|
Rostami I. Empowering the emission of upconversion nanoparticles for precise subcellular imaging[J]. Nanomaterials, 2021, 11(6):1541
|
Guryev E L, Smyshlyaeva A S, Shilyagina N Y, et al. UCNP-based photoluminescent nanomedicines for targeted imaging and theranostics of cancer[J]. Molecules, 2020, 25(18):4302
|
Yan H, Dong J T, Huang X, et al. Protein-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles via diselenide linkages for drug release tracking in real time and tumor chemotherapy[J]. ACS Applied Materials & Interfaces, 2021, 13(24):29070-29082
|
Gao J, Yao X L, Chen Y X, et al. Near-infrared light-induced self-powered aptasensing platform for aflatoxin B1 based on upconversion nanoparticles-doped Bi2S3 nanorods[J]. Analytical Chemistry, 2021, 93(2):677-682
|
Maysinger D, Gran E R, Bertorelle F, et al. Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes[J]. Theranostics, 2020, 10(4):1633-1648
|
Pasquali F, Agrimonti C, Pagano L, et al. Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure[J]. Journal of Hazardous Materials, 2017, 324:744-752
|
孙晶, 欧阳少虎, 胡献刚, 等. 3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响[J]. 生态毒理学报, 2020, 15(6):101-114
Sun J, Ouyang S H, Hu X G, et al. Effects of three carbonaceous nanomaterials on the developmental toxicity, oxidative stress, and metabolic profile in zebrafish[J]. Asian Journal of Ecotoxicology, 2020, 15(6):101-114(in Chinese)
|
Li Q, Wang Z, Chen Y R, et al. Elemental bio-imaging of PEGylated NaYF4:Yb/Tm/Gd upconversion nanoparticles in mice by laser ablation inductively coupled plasma mass spectrometry to study toxic side effects on the spleen, liver and kidneys[J]. Metallomics:Integrated Biometal Science, 2017, 9(8):1150-1156
|
Guryev E L, Shilyagina N Y, Kostyuk A B, et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2019, 170(1):123-132
|
Abualrejal M M A, Eid K, Tian R R, et al. Rational synthesis of three-dimensional core-double shell upconversion nanodendrites with ultrabright luminescence for bioimaging application[J]. Chemical Science, 2019, 10(32):7591-7599
|
Shan X R, Chen Q, Yin X Y, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2020, 8(3):426-437
|
Chen Y, Fei X X, Ye C Q, et al. Acute hepatotoxicity of multimodal targeted imaging contrast agent NaLuF 4:Gd, Yb, Er-PEG/PEI-FA in mice[J]. The Journal of Toxicological Sciences, 2019, 44(9):621-632
|
Tian R R, Zhao S, Liu G F, et al. Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus Agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor[J]. Biomaterials, 2019, 212:64-72
|
Seo H J, Nam S H, Im H, et al. Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form[J]. Scientific Reports, 2015, 5:15685
|
Feng Y, Chen H D, Ma L N, et al. Surfactant-free aqueous synthesis of novel Ba2GdF7:Yb3+, Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging[J]. ACS Applied Materials & Interfaces, 2017, 9(17):15096-15102
|
Li L Y, Hao P L, Wei P, et al. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification[J]. Biomaterials, 2017, 136:43-55
|
Yu Z S, Xia Y Z, Xing J, et al. Y1-receptor-ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity[J]. Nanoscale, 2018, 10(36):17038-17052
|
Lay A, Sheppard O H, Siefe C, et al. Optically robust and biocompatible mechanosensitive upconverting nanoparticles[J]. ACS Central Science, 2019, 5(7):1211-1222
|
Kumar K N, Vijayalakshmi L, Choi J. Investigation of upconversion photoluminescence of Yb3+/Er3+:NaLaMgWO6 noncytotoxic double-perovskite nanophosphors[J]. Inorganic Chemistry, 2019, 58(3):2001-2011
|
You Y, Cheng S S, Zhang L, et al. Rational modulation of the luminescence of upconversion nanomaterials with phycocyanin for the sensing and imaging of myeloperoxidase during an inflammatory process[J]. Analytical Chemistry, 2020, 92(7):5091-5099
|
邵帅, 丁彬彬, 朱忠丽, 等. 利用主客体化学制备水溶性上转换纳米药物及在肿瘤诊疗中的应用[J]. 分析化学, 2019, 47(6):823-831
Shao S, Ding B B, Zhu Z L, et al. Preparation of water-soluble up-conversion nano-drug by host-guest chemistry and its application in tumor diagnosis and treatment[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6):823-831(in Chinese)
|
Hu Y L, Wu B Y, Jin Q, et al. Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells[J]. Talanta, 2016, 152:504-512
|
Chan Y C, Chan M H, Chen C W, et al. Erratum:Near-infrared-activated fluorescence resonance energy transfer-based nanocomposite to sense MMP2-overexpressing oral cancer cells[J]. ACS Omega, 2018, 3(2):2444
|
Chen Y H, D'Amario C, Gee A, et al. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4:Yb, Er upconversion nanoparticles[J]. Acta Biomaterialia, 2020, 102:384-393
|
Tian J, Zeng X, Xie X J, et al. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(20):6550-6558
|
Chen J P, Shi S S, Liu G F, et al. Potential clinical risk of inflammation and toxicity from rare-earth nanoparticles in mice[J]. Chinese Medical Journal, 2018, 131(13):1591-1597
|
Xu J T, Lv R C, Du S K, et al. UCNPs@gelatin-ZnPc nanocomposite:Synthesis, imaging and anticancer properties[J]. Journal of Materials Chemistry B, 2016, 4(23):4138-4146
|
Rafique R, Baek S H, Park C Y, et al. Morphological evolution of upconversion nanoparticles and their biomedical signal generation[J]. Scientific Reports, 2018, 8(1):17101
|
Guller A E, Nadort A, Generalova A N, et al. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications:Better safe than brighter?[J]. ACS Biomaterials Science & Engineering, 2018, 4(9):3143-3153
|
Zhang J P, Liu F Y, Li T, et al. Surface charge effect on the cellular interaction and cytotoxicity of NaYF4:Yb3+, Er3+@SiO2 nanoparticles[J]. RSC Advances, 2015, 5(10):7773-7780
|
Samhadaneh D M, Mandl G A, Han Z, et al. Evaluation of lanthanide-doped upconverting nanoparticles for in vitro and in vivo applications[J]. ACS Applied Bio Materials, 2020, 3(7):4358-4369
|
Vedunova M V, Mishchenko T A, Mitroshina E V, et al. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures[J]. RSC Advances, 2016, 6(40):33656-33665
|
Mishchenko T A, Mitroshina E V, Smyshlyaeva A S, et al. Comparative analysis of the effects of upconversion nanoparticles on normal and tumor brain cells[J]. Acta Naturae, 2020, 12(2):86-94
|
Liu B, Sun J, Zhu J J, et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy[J]. Advanced Materials, 2020, 32(39):e2004460
|
Hernandez-Adame L, Cortez-Espinosa N, Portales-Pérez D P, et al. Toxicity evaluation of high-fluorescent rare-earth metal nanoparticles for bioimaging applications[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105(3):605-615
|
Hernández-Adame L, Méndez-Blas A, Ruiz-García J, et al. Synthesis, characterization, and photoluminescence properties of Gd:Tb oxysulfide colloidal particles[J]. Chemical Engineering Journal, 2014, 258:136-145
|
Semashko V V, Pudovkin M S, Cefalas A C, et al. Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions[J]. Nanoscale Research Letters, 2018, 13(1):370
|
Wang C, He M, Chen B B, et al. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells[J]. Ecotoxicology and Environmental Safety, 2020, 203:110951
|