Pradas del Real A E, García-Gonzalo P, Lobo M C, et al. Chromium speciation modifies root exudation in two genotypes of Silene vulgaris[J]. Environmental and Experimental Botany, 2014, 107:1-6
|
Kotaś J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 2000, 107(3):263-283
|
Mohanty M, Patra H K. Attenuation of chromium toxicity by bioremediation technology[J]. Reviews of Environmental Contamination and Toxicology, 2011, 210:1-34
|
Kimbrough D E, Cohen Y, Winer A M, et al. A critical assessment of chromium in the environment[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(1):1-46
|
Fendorf S E. Surface reactions of chromium in soils and waters[J]. Geoderma, 1995, 67(1-2):55-71
|
Panda S K, Choudhury S. Chromium stress in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1):95-102
|
Losi M E, Amrhein C, Frankenberger W T Jr. Environmental biochemistry of chromium[J]. Reviews of Environmental Contamination and Toxicology, 1994, 136:91-121
|
Cheung K H, Gu J D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential:A review[J]. International Biodeterioration & Biodegradation, 2007, 59(1):8-15
|
Singh H P, Mahajan P, Kaur S, et al. Chromium toxicity and tolerance in plants[J]. Environmental Chemistry Letters, 2013, 11(3):229-254
|
Rai V, Vajpayee P, Singh S N, et al. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L.[J]. Plant Science, 2004, 167(5):1159-1169
|
Poschenrieder C, Gunse B, Barcelo J. Chromium-induced inhibition of ethylene evolution in bean (Phaseolus vulgaris) leaves[J]. Physiologia Plantarum, 1993, 89(2):404-408
|
张黛静, 姜丽娜, 邵云, 等. 铬胁迫下不同品种小麦萌发和内源激素的变化[J]. 应用与环境生物学报, 2009, 15(5):602-605
Zhang D J, Jiang L N, Shao Y, et al. Variations in germination and endogenous hormone contents of wheat cultivars under Cr stress[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(5):602-605(in Chinese)
|
Montes-Holguin M O, Peralta-Videa J R, Meitzner G, et al. Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium(Ⅲ) and chromium(Ⅵ) stress[J]. Environmental Toxicology and Chemistry, 2006, 25(1):220-226
|
Pandey V, Dixit V, Shyam R. Chromium(Ⅵ) induced changes in growth and root plasma membrane redox activities in pea plants[J]. Protoplasma, 2009, 235(1-4):49-55
|
Vernay P, Gauthier-Moussard C, Hitmi A. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L.[J]. Chemosphere, 2007, 68(8):1563-1575
|
Subrahmanyam D. Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.)[J]. Photosynthetica, 2008, 46(3):339-345
|
Schiavon M, Pilon-Smits E A, Wirtz M, et al. Interactions between chromium and sulfur metabolism in Brassica juncea[J]. Journal of Environmental Quality, 2008, 37(4):1536-1545
|
Gopal R, Rizvi A H, Nautiyal N. Chromium alters iron nutrition and water relations of spinach[J]. Journal of Plant Nutrition, 2009, 32(9):1551-1559
|
Vajpayee P, Tripathi R D, Rai U N, et al. Chromium(Ⅵ) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L.[J]. Chemosphere, 2000, 41(7):1075-1082
|
Shanker A K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants[J]. Environment International, 2005, 31(5):739-753
|
Duman F, Koca F D, Sahan S. Antagonist effects of sodium chloride on the biological responses of an aquatic plant (Ceratophyllum demersum L.) exposed to hexavalent chromium[J]. Water, Air, & Soil Pollution, 2014, 225(2):1-12
|
Pereira M, Bartolomé M C, Sánchez-Fortún S. Bioadsorption and bioaccumulation of chromium trivalent in Cr(Ⅲ)-tolerant microalgae:A mechanisms for chromium resistance[J]. Chemosphere, 2013, 93(6):1057-1063
|
Chandra P, Kulshreshtha K. Chromium accumulation and toxicity in aquatic vascular plants[J]. The Botanical Review, 2004, 70(3):313-327
|
Choo T P, Lee C K, Low K S, et al. Accumulation of chromium(Ⅵ) from aqueous solutions using water lilies (Nymphaea spontanea)[J]. Chemosphere, 2006, 62(6):961-967
|
Ganesh K S, Baskaran L, Rajasekaran S, et al. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants[J]. Colloids and Surfaces B, Biointerfaces, 2008, 63(2):159-163
|
Sangwan P, Kumar V, Joshi U N. Effect of chromium(Ⅵ) toxicity on enzymes of nitrogen metabolism in clusterbean (Cyamopsis tetragonoloba L.)[J]. Enzyme Research, 2014, 2014:784036
|
Shukla O P, Dubey S, Rai U N. Preferential accumulation of cadmium and chromium:Toxicity in Bacopa monnieri L. under mixed metal treatments[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 78(3-4):252-257
|
Kundu D, Dey S, Raychaudhuri S S. Chromium(Ⅵ)-induced stress response in the plant Plantago ovata Forsk in vitro[J]. Genes and Environment, 2018, 40:21
|
Narendrula-Kotha R, Theriault G, Mehes-Smith M, et al. Metal toxicity and resistance in plants and microorganisms in terrestrial ecosystems[J]. Reviews of Environmental Contamination and Toxicology, 2020, 249:1-27
|
Abdu N, Abdullahi A A, Abdulkadir A. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 2017, 15(1):65-84
|
Kong Z Y, Glick B R. The role of plant growth-promoting bacteria in metal phytoremediation[J]. Advances in Microbial Physiology, 2017, 71:97-132
|
Glick B R. Plant growth-promoting bacteria:Mechanisms and applications[J]. Scientifica, 2012, 2012:963401
|
Ma Y, Prasad M N, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2):248-258
|
Pandey P, Irulappan V, Bagavathiannan M V, et al. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits[J]. Frontiers in Plant Science, 2017, 8:537
|
Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth-promoting rhizobacteria[J]. Biocontrol Science and Technology, 2001, 11(5):557-574
|
Ahemad M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria[J]. Journal of Genetic Engineering & Biotechnology, 2015, 13(1):51-58
|
Gupta P, Kumar V, Usmani Z, et al. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.)[J]. Journal of Hazardous Materials, 2019, 377:391-398
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere bacterial signalling:A love parade beneath our feet[J]. Critical Reviews in Microbiology, 2004, 30(4):205-240
|
Indiragandhi P, Anandham R, Madhaiyan M, et al. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera:Plutellidae)[J]. Current Microbiology, 2008, 56(4):327-333
|
Neubauer U, Furrer G, Kayser A, et al. Siderophores, NTA, and citrate:Potential soil amendments to enhance heavy metal mobility in phytoremediation[J]. International Journal of Phytoremediation, 2000, 2(4):353-368
|
Rajkumar M, Nagendran R, Lee K J, et al. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard[J]. Chemosphere, 2006, 62(5):741-748
|
Belimov A A, Hontzeas N, Safronova V I, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern)[J]. Soil Biology and Biochemistry, 2005, 37(2):241-250
|
Gupta P, Rani R, Chandra A, et al. Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils[J]. Scientific Reports, 2018, 8(1):4860
|
Hemambika B, Balasubramanian V, Rajesh Kannan V, et al. Screening of chromium-resistant bacteria for plant growth-promoting activities[J]. Soil and Sediment Contamination, 2013, 22(7):717-736
|
Khan N, Mishra A, Chauhan P S, et al. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil[J]. Antonie Van Leeuwenhoek, 2012, 101(2):453-459
|
Morel M A, Ubalde M C, Braña V, et al. Delftia sp. JD2:A potential Cr(Ⅵ)-reducing agent with plant growth-promoting activity[J]. Archives of Microbiology, 2011, 193(1):63-68
|
Wani P A, Khan M S, Zaidi A. Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil[J]. Current Microbiology, 2007, 54(3):237-243
|
Vosatka M, Gryndler M, Prikryl Z. Effect of the rhizosphere bacterium Pseudomonas putida, arbuscular mycorrhizal fungi and substrate composition on the growth of strawberry[J]. Agronomie, 1992, 12(10):859-863
|
Todeschini V, AitLahmidi N, Mazzucco E, et al. Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome[J]. Frontiers in Plant Science, 2018, 9:1611
|
曾加会, 李元媛, 阮迪申, 等. 植物根际促生菌及丛枝菌根真菌协助植物修复重金属污染土壤的机制[J]. 微生物学通报, 2017, 44(5):1214-1221
Zeng J H, Li Y Y, Ruan D S, et al. Phytoremediation of heavy metal contaminated soils by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi[J]. Microbiology China, 2017, 44(5):1214-1221(in Chinese)
|
Islam F, Yasmeen T, Arif M S, et al. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants[J]. Plant Physiology and Biochemistry, 2016, 108:456-467
|
Xu Z Y, Ban Y H, Jiang Y H, et al. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland:A review[J]. Pedosphere, 2016, 26(5):592-617
|
Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A. Arbuscular mycorrhizal fungal responses to abiotic stresses:A review[J]. Phytochemistry, 2016, 123:4-15
|
Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological, ecological and applied aspects[J]. Mycorrhiza, 1997, 7(3):139-153
|
Ferrol N, Tamayo E, Vargas P. The heavy metal paradox in arbuscular mycorrhizas:From mechanisms to biotechnological applications[J]. Journal of Experimental Botany, 2016, 67(22):6253-6265
|
Nakatani A S, Mescolotti D L C, Nogueira M A, et al. Dosage-dependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge[J]. Mycorrhiza, 2011, 21(6):515-522
|
Coughlan A P, Dalpe Y, Lapointe L, et al. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests[J]. Canadian Journal of Forest Research, 2000, 30(10):1543-1554
|
Wu S L, Hu Y J, Zhang X, et al. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism[J]. Environmental and Experimental Botany, 2018, 147:43-52
|
Singh S, Parihar P, Singh R, et al. Heavy metal tolerance in plants:Role of transcriptomics, proteomics, metabolomics, and ionomics[J]. Frontiers in Plant Science, 2015, 6:1143
|
Wu S L, Zhang X, Huang L B, et al. Arbuscular mycorrhiza and plant chromium tolerance[J]. Soil Ecology Letters, 2019, 1(3-4):94-104
|
Wang W X, Shi J C, Xie Q J, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Molecular Plant, 2017, 10(9):1147-1158
|
冯欢, 蒙盼盼, 豆青, 等. 菌根真菌与植物共生营养交换机制研究进展[J]. 应用生态学报, 2019, 30(10):3596-3604
Feng H, Meng P P, Dou Q, et al. Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants[J]. Chinese Journal of Applied Ecology, 2019, 30(10):3596-3604(in Chinese)
|
Tang N W, San Clemente H, Roy S, et al. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among glomeromycota for obligate biotrophy[J]. Frontiers in Microbiology, 2016, 7:233
|
Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216(1):23-37
|
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J]. The New Phytologist, 2007, 173(1):11-26
|
Müller L M, Harrison M J. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis[J]. Current Opinion in Plant Biology, 2019, 50:132-139
|
Gil-Cardeza M L, Calonne-Salmon M, Gómez E, et al. Short-term chromium(Ⅵ) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833[J]. Chemosphere, 2017, 187:27-34
|
Benedetto A, Magurno F, Bonfante P, et al. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae[J]. Mycorrhiza, 2005, 15(8):620-627
|
Xie X N, Lin H, Peng X W, et al. Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont[J]. Molecular Plant, 2016, 9(12):1583-1608
|
de Plassard C, Becquer A, Garcia K. Phosphorus transport in mycorrhiza:How far are we?[J]. Trends in Plant Science, 2019, 24(9):794-801
|
Wu S L, Chen B D, Sun Y Q, et al. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon Pers.) is enhanced by arbuscular mycorrhiza in Cr(Ⅵ)-contaminated soils[J]. Environmental Toxicology and Chemistry, 2014, 33(9):2105-2113
|
陈保冬, 张莘, 伍松林, 等. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 2019, 38(1):1-25
Chen B D, Zhang X, Wu S L, et al. The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum:Underlying mechanisms and ecological implications[J]. Rock and Mineral Analysis, 2019, 38(1):1-25(in Chinese)
|
Costa R C, Moura F C, Oliveira P E, et al. Controlled reduction of red mud waste to produce active systems for environmental applications:Heterogeneous Fenton reaction and reduction of Cr(Ⅵ)[J]. Chemosphere, 2010, 78(9):1116-1120
|
Anjum N A, Ahmad I, Mohmood I, et al. Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids-A review[J]. Environmental and Experimental Botany, 2012, 75:307-324
|
Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants:A re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell and Environment, 2005, 28(8):1056-1071
|
沈亚琴, 魏源, 陈志鹏, 等. 锑胁迫下丛枝菌根真菌对玉米生长与锑吸收及抗氧化酶的影响[J]. 环境科学研究, 2017, 30(5):712-719
Shen Y Q, Wei Y, Chen Z P, et al. Effects of arbuscular mycorrhizal fungi on growth, antimony uptake and antioxidant enzymes of maize under antimony stress[J]. Research of Environmental Sciences, 2017, 30(5):712-719(in Chinese)
|
Sharma V, Parmar P, Kumari N. Differential cadmium stress tolerance in wheat genotypes under mycorrhizal association[J]. Journal of Plant Nutrition, 2016, 39(14):2025-2036
|
Pallara G, Todeschini V, Lingua G, et al. Transcript analysis of stress defence genes in a white poplar clone inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and grown on a polluted soil[J]. Plant Physiology and Biochemistry, 2013, 63:131-139
|
Gil-Cardeza M L, Ferri A, Cornejo P, et al. Distribution of chromium species in a Cr-polluted soil:Presence of Cr(Ⅲ) in glomalin related protein fraction[J]. Science of the Total Environment, 2014, 493:828-833
|
Arias J A, Peralta-Videa J R, Ellzey J T, et al. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola[J]. Environmental Science & Technology, 2010, 44(19):7272-7279
|
Wu S L, Zhang X, Chen B D, et al. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J]. Environmental and Experimental Botany, 2016, 122:10-18
|
Wu S L, Zhang X, Sun Y Q, et al. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses[J]. Journal of Hazardous Materials, 2016, 316:34-42
|
Holland S L, Avery S V. Chromate toxicity and the role of sulfur[J]. Metallomics:Integrated Biometal Science, 2011, 3(11):1119-1123
|
Wu S L, Zhang X, Chen B D, et al. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J]. Environmental and Experimental Botany, 2016, 122:10-18
|
Wu S L, Zhang X, Sun Y Q, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science & Technology, 2015, 49(24):14036-14047
|
Schulz B, Boyle C, Draeger S, et al. Endophytic fungi:A source of novel biologically active secondary metabolites[J]. Mycological Research, 2002, 106(9):996-1004
|
Li H Y, Wei D Q, Shen M, et al. Endophytes and their role in phytoremediation[J]. Fungal Diversity, 2012, 54(1):11-18
|
Rozpądek P, Domka A, Ważny R, et al. How does the endophytic fungus Mucor sp. improve Arabidopsis arenosa vegetation in the degraded environment of a mine dump?[J]. Environmental and Experimental Botany, 2018, 147:31-42
|
Ent A, Baker A J M, Reeves R D, et al. Hyperaccumulators of metal and metalloid trace elements:Facts and fiction[J]. Plant and Soil, 2013, 362(1-2):319-334
|
Domka A M, Rozpaądek P, Turnau K. Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity[J]. Frontiers in Microbiology, 2019, 10:371
|
Hardoim P R, van Overbeek L S, Berg G, et al. The hidden world within plants:Ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 2015, 79(3):293-320
|
Atsatt P R, Whiteside M D. Novel symbiotic protoplasts formed by endophytic fungi explain their hidden existence, lifestyle switching, and diversity within the plant kingdom[J]. PLoS One, 2014, 9(4):e95266
|
Sim C S F, Cheow Y L, Ng S L, et al. Discovering metal-tolerant endophytic fungi from the phytoremediator plant Phragmites[J]. Water, Air, & Soil Pollution, 2018, 229(3):1-11
|
Zhou Y, Li X, Gao Y, et al. Plant endophytes and arbuscular mycorrhizal fungi alter plant competition[J]. Functional Ecology, 2018, 32(5):1168-1179
|
Field K J, Rimington W R, Bidartondo M I, et al. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline[J]. The ISME Journal, 2016, 10(6):1514-1526
|
Shanmugaiah V, Balasubramanian N, Gomathinayagam S, et al. Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants[J]. African Journal of Agricultural Research, 2009, 4(11):1220-1225
|
Hiruma K, Gerlach N, Sacristán S, et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent[J]. Cell, 2016, 165(2):464-474
|
Agler M T, Ruhe J, Kroll S, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation[J]. PLoS Biology, 2016, 14(1):e1002352
|
Purahong W, Hyde K D. Effects of fungal endophytes on grass and non-grass litter decomposition rates[J]. Fungal Diversity, 2011, 47(1):1-7
|
White J F, Kingsley K L, Verma S K, et al. Rhizophagy cycle:An oxidative process in plants for nutrient extraction from symbiotic microbes[J]. Microorganisms, 2018, 6(3):E95
|
Gadd G M. Fungal production of citric and oxalic acid:Importance in metal speciation, physiology and biogeochemical processes[J]. Advances in Microbial Physiology, 1999, 41:47-92
|
Devi L S, Joshi S R. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi[J]. Journal of Microscopy and Ultrastructure, 2015, 3(1):29-37
|
Singh P, Kim Y J, Zhang D B, et al. Biological synthesis of nanoparticles from plants and microorganisms[J]. Trends in Biotechnology, 2016, 34(7):588-599
|
DalCorso G, Manara A, Furini A. An overview of heavy metal challenge in plants:From roots to shoots[J]. Metallomics:Integrated Biometal Science, 2013, 5(9):1117-1132
|
Zahoor M, Irshad M, Rahman H, et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7[J]. Ecotoxicology and Environmental Safety, 2017, 142:139-149
|
Na G, Salt D E. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants[J]. Environmental and Experimental Botany, 2011, 72(1):18-25
|
Freeman J L, Persans M W, Ken N M, et al. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators[J]. The Plant Cell, 2004, 16(8):2176-2191
|
Zhao D K, Li T, Shen M, et al. Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila:Evidence from RNA-seq data[J]. Microbiological Research, 2015, 170:27-35
|
Adriaensen K, van der Lelie D, van Laere A, et al. A zinc-adapted fungus protects pines from zinc stress[J]. New Phytologist, 2004, 161(2):549-555
|
Tang Y Z, Shi L, Zhong K C, et al. Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals[J]. Chemosphere, 2019, 215:115-123
|
Hartley J, Cairney J W G, Meharg A A. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment?[J]. Plant and Soil, 1997, 189(2):303-319
|
Lastovetsky O A, Gaspar M L, Mondo S J, et al. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52):15102-15107
|
Uroz S, Calvaruso C, Turpault M P, et al. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil[J]. Applied and Environmental Microbiology, 2007, 73(9):3019-3027
|
Fransson P, Andersson A, Norström S, et al. Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure[J]. Fungal Ecology, 2016, 20:211-224
|
Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings[J]. Water, Air, and Soil Pollution, 2007, 182(1-4):83-90
|
Strandberg G W, Shumate S E, Parrott J R. Microbial cells as biosorbents for heavy metals:Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 1981, 41(1):237-245
|
Gadd G M. Interactions of Fungi with Toxic Metals[M]//The Genus Aspergillus. Boston:Springer US, 1994:361-374
|
Fogarty R V, Tobin J M. Fungal melanins and their interactions with metals[J]. Enzyme and Microbial Technology, 1996, 19(4):311-317
|
Bhanoori M, Venkateswerlu G. In vivo chitin-cadmium complexation in cell wall of Neurospora crassa[J]. Biochimica et Biophysica Acta, 2000, 1523(1):21-28
|
Martino E, Coisson J D, Lacourt I, et al. Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi[J]. Mycological Research, 2000, 104(7):825-833
|
Ashford A E, Allaway C A, Peterson C A, et al. Nutrient transfer and the fungus-root interface[J]. Functional Plant Biology, 1989, 16(1):85
|
Fomina M A, Alexander I J, Colpaert J V, et al. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(5):851-866
|
Meharg A A. The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations[J]. Mycological Research, 2003, 107(11):1253-1265
|
Colpaert J V, Assche J A. The effects of cadmium on ectomycorrhizal Pinus sylvestris L.[J]. New Phytologist, 1993, 123(2):325-333
|
Jones M D, Hutchinson T C. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper[J]. New Phytologist, 1986, 102(3):429-442
|
Denny H J, Wilkins D A. Zinc tolerance in Betula spp. Ⅳ. The mechanism of ectomycorrhizal amelioration of zinc toxicity[J]. New Phytologist, 1987, 106(3):545-553
|
Ashford A E, Peterson R L, Dwarte D, et al. Polyphosphate granules in eucalypt mycorrhizas:Determination by energy dispersive X-ray microanalysis[J]. Canadian Journal of Botany, 1986, 64(3):677-687
|
Zarb J, Walters D R. Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to lead[J]. Mycological Research, 1996, 100(4):486-488
|
Bellion M, Courbot M, Jacob C, et al. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi[J]. FEMS Microbiology Letters, 2006, 254(2):173-181
|
Trotter E W, Grant C M. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae[J]. Molecular Microbiology, 2002, 46(3):869-878
|
Ott T, Fritz E, Polle A, et al. Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium[J]. FEMS Microbiology Ecology, 2002, 42(3):359-366
|
Kalsotra T, Khullar S, Agnihotri R, et al. Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance[J]. Microbiology, 2018, 164(6):868-876
|
Colpaert J V, Wevers J H L, Krznaric E, et al. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution[J]. Annals of Forest Science, 2011, 68(1):17-24
|
Wężowicz K, Rozpądek P, Turnau K. The diversity of endophytic fungi in Verbascum lychnitis from industrial areas[J]. Symbiosis, 2014, 64(3):139-147
|